Abstract:
An apparatus and method is described herein for conditionally committing /andor speculative checkpointing transactions, which potentially results in dynamic resizing of transactions. During dynamic optimization of binary code, transactions are inserted to provide memory ordering safeguards, which enables a dynamic optimizer to more aggressively optimize code. And the conditional commit enables efficient execution of the dynamic optimization code, while attempting to prevent transactions from running out of hardware resources. While the speculative checkpoints enable quick and efficient recovery upon abort of a transaction. Processor hardware is adapted to support dynamic resizing of the transactions, such as including decoders that recognize a conditional commit instruction, a speculative checkpoint instruction, or both. And processor hardware is further adapted to perform operations to support conditional commit or speculative checkpointing in response to decoding such instructions.
Abstract:
Dynamically switching cores on a heterogeneous multi-core processing system may be performed by executing program code on a first processing core. Power up of a second processing core may be signaled. A first performance metric of the first processing core executing the program code may be collected. When the first performance metric is better than a previously determined core performance metric, power down of the second processing core may be signaled and execution of the program code may be continued on the first processing core. When the first performance metric is not better than the previously determined core performance metric, execution of the program code may be switched from the first processing core to the second processing core.
Abstract:
An apparatus and method is described herein for conditionally committing /andor speculative checkpointing transactions, which potentially results in dynamic resizing of transactions. During dynamic optimization of binary code, transactions are inserted to provide memory ordering safeguards, which enables a dynamic optimizer to more aggressively optimize code. And the conditional commit enables efficient execution of the dynamic optimization code, while attempting to prevent transactions from running out of hardware resources. While the speculative checkpoints enable quick and efficient recovery upon abort of a transaction. Processor hardware is adapted to support dynamic resizing of the transactions, such as including decoders that recognize a conditional commit instruction, a speculative checkpoint instruction, or both. And processor hardware is further adapted to perform operations to support conditional commit or speculative checkpointing in response to decoding such instructions.
Abstract:
In one embodiment of the invention a method comprising (1) receiving an unstructured binary code region that is single-threaded; (2) determining a slice criterion for the region; (3) determining a call edge, a return edge, and a fallthrough pseudo-edge for the region based on analysis of the region at a binary level; and (4) determining a context-sensitive slice based on the call edge, the return edge, the fallthrough pseudo-edge, and the slice criterion. Embodiments of the invention may include a program analysis technique that can be used to provide context-sensitive slicing of binary programs for slicing hot regions identified at runtime, with few underlying assumptions about the program from which the binary is derived. Also, in an embodiment a slicing method may include determining a context-insensitive slice, when a time limit is met, by determining the context-insensitive slice while treating call edges as a normal control flow edges.
Abstract:
Embodiments described herein utilize restricted transactional memory (RTM) instructions to implement speculative compile time optimizations that will be automatically rolled back by hardware in the event of a missed speculation. In one embodiment, a lightweight version of RTM for speculative compiler optimization is described to provide lower operational overhead in comparison to conventional RTM implementations used when performing SLE.
Abstract:
In an embodiment, a processor includes at least one core and a dynamic language accelerator to execute a bytecode responsive to a memory mapped input/output (MMIO) operation on a file descriptor associated with the dynamic language accelerator. The processor may block execution of native code while the dynamic language accelerator executes the bytecode. Other embodiments are described and claimed.
Abstract:
An apparatus and method is described herein for conditionally committing and/or speculative checkpointing transactions, which potentially results in dynamic resizing of transactions. During dynamic optimization of binary code, transactions are inserted to provide memory ordering safeguards, which enables a dynamic optimizer to more aggressively optimize code. And the conditional commit enables efficient execution of the dynamic optimization code, while attempting to prevent transactions from running out of hardware resources. While the speculative checkpoints enable quick and efficient recovery upon abort of a transaction. Processor hardware is adapted to support dynamic resizing of the transactions, such as including decoders that recognize a conditional commit instruction, a speculative checkpoint instruction, or both. And processor hardware is further adapted to perform operations to support conditional commit or speculative checkpointing in response to decoding such instructions.
Abstract:
In one embodiment of the invention a method comprising (1) receiving an unstructured binary code region that is single-threaded; (2) determining a slice criterion for the region; (3) determining a call edge, a return edge, and a fallthrough pseudo-edge for the region based on analysis of the region at a binary level; and (4) determining a context-sensitive slice based on the call edge, the return edge, the fallthrough pseudo-edge, and the slice criterion. Embodiments of the invention may include a program analysis technique that can be used to provide context-sensitive slicing of binary programs for slicing hot regions identified at runtime, with few underlying assumptions about the program from which the binary is derived. Also, in an embodiment a slicing method may include determining a context-insensitive slice, when a time limit is met, by determining the context-insensitive slice while treating call edges as a normal control flow edges.