Abstract:
A display having an integrated antenna with a substantially uniform transparency and/or light across the display. The display may have a uniformity layer that is an optical balance of the antenna, wherein the uniformity layer and the antenna have respective optical transparencies that provide a substantially uniform transparency across the display. The display may also have a backlight that has a surface brightness intensity corresponding to an optical inverse of the antenna, and is configured to provide a substantially uniform light across the display.
Abstract:
An electronic computing device with a self-shielding antenna. An electronic computing device may include a frame, an antenna, and an antenna shielding. The frame includes a top cover and a bottom cover. Electronic components are included in a space formed between the top cover and the bottom cover. The antenna is for wireless transmission and reception and included in the frame near an edge of the frame. The antenna shielding is disposed around the antenna for providing electro-magnetic shielding from radio frequency (RE) noises generated from the electronic components included in the frame. The antenna shielding may be a metal wall disposed between the top cover and the bottom cover around the antenna. The frame may be a metallic frame and may include a cut-out in the top cover and the bottom cover above and below the antenna, and a non-metallic cover may be provided in the cut-out.
Abstract:
Technologies for the calibration of a body presence sensor include a mobile computing device configured to calibrate the body presence sensor based on a present physical configuration mode of the mobile computing device. The mobile computing device may be adjustable into multiple physical configuration modes based on the intended use of the mobile computing device. The mobile computing device controls a transmit power level of an associated communication circuit based on whether the body presence sensor detects a body presence within proximity to the mobile computing device.
Abstract:
A touch panel for a display may include a touch sensor with a plurality of electrode traces. A first portion of the plurality of electrode traces may form sensing lines configured to receive touch input. The touch sensor includes an edge dummy area between an edge of the touch sensor and an electrode trace of a remaining portion of the plurality of electrode traces. The edge dummy area may be located outside of the sensing lines. The touch panel may further include an antenna with a radiation structure and a ground structure. The radiation structure may be located within a routing traces area outside of the touch sensor. The ground structure may be located within the edge dummy area. The ground structure may include an electrode trace of the plurality of electrode traces located within the edge dummy area of the touch sensor.
Abstract:
In various aspects, a radio frequency circuit is provided. The radio frequency circuit may include a substrate that may include a radio frequency front-end to antenna (RF FE-to-Ant) connector. The RF FE-to-Ant connector may include a conductor track structure and a substrate connection structure coupled to the conductor track structure. The substrate may include radio frequency front-end circuitry monolithically integrated in the substrate. The substrate connection structure may include at least one of a solderable structure, a weldable structure, or an adherable structure. The substrate connection structure may be configured to form at least one radio frequency signal interface with an antenna circuit connection structure of a substrate-external antenna circuit. The substrate may include an edge region. The substrate connection structure may be disposed in the edge region.
Abstract:
A mechanism is described for facilitating hybrid communication between devices according to one embodiment. A method of embodiments, as described herein, includes coupling an inductive coil of a near proximity circuitry with a capacitive pad of a body area circuitry to form a hybrid circuitry, and facilitating, via the hybrid circuitry, the hybrid communication between a plurality of devices.
Abstract:
Technologies for the calibration of a body presence sensor include a mobile computing device configured to calibrate the body presence sensor based on a present physical configuration mode of the mobile computing device. The mobile computing device may be adjustable into multiple physical configuration modes based on the intended use of the mobile computing device. The mobile computing device controls a transmit power level of an associated communication circuit based on whether the body presence sensor detects a body presence within proximity to the mobile computing device.
Abstract:
Techniques for integrating a plurality of radio antennas in an electronic device are described. An example of an electronic device includes a display housing with a display screen and top bezel disposed above the display screen, and a plurality of components disposed in the top bezel. The plurality of components include a first cellular communication antenna disposed on a first side of the top bezel, and a second cellular communication antenna disposed on a second side of the top bezel opposite the first side. The plurality of components also include a first WiFi antenna disposed adjacent to the second cellular communication antenna, and a second WiFi antenna disposed adjacent to the second cellular communication antenna on an opposite side from the first WiFi antenna.
Abstract:
A touch panel (110) for a display (100A, 100B), the touch panel having a touch sensor (114) configured to receive touch input, and a micro wire mesh antenna (410A, 410B) located within or below the touch sensor.
Abstract:
An antenna element forms a ring slot antenna comprising a first slot and second slot. The antenna element is located on a first surface of a conductive chassis that encases a body or a volume for wireless communication signals to be received or transmitted. A coupling component is located on an opposite side of the conductive chassis and behind the antenna element. The coupling component facilitates a coupling between a communication component and the antenna element as a function of the orientation and geometric shape of the coupling component to facilitate different resonant frequencies via the first and second slots of the antenna element.