Abstract:
Multi-user detection (MUD) performance is optimized to eliminate redundant use of power during processing. An overbuilt A-matrix, i.e., a system response matrix, is provided. The overbuilt A-matrix uses all possible codes, e.g., all codes identified in a candidate code list (CCL) provided by blind code detection (BCD). The overbuilt A-matrix is passed to the MUD which extracts only those rows or columns required for codes that have actually been received, thus eliminating the need to recompute whitening matched filter (WMF) outputs that do not correspond to the actually received code.
Abstract:
A receiver or an integrated circuit (IC) incorporated therein includes a fast Fourier transform (FFT)-based (or hybrid FFT-based) sliding window block level equalizer (BLE) for generating equalized samples. The BLE includes a noise power estimator, first and second channel estimators, an FFT-based chip level equalizer (CLEQ) and a channel monitor unit. The noise power estimator generates a noise power estimate based on two diverse sample data streams. The channel estimators generate respective channel estimates based on the sample data streams. The channel monitor unit generates a first channel monitor signal including truncated channel estimate vectors based on the channel estimates, and a second channel monitor signal which indicates an approximate rate of change of the truncated channel estimate vectors. The FFT-based CLEQ generates the equalized samples based on the noise power estimate, one-block samples of the first and second sample data streams, the channel estimates and the monitor signals.
Abstract:
Multi-user detection (MUD) performance is optimized to eliminate redundant use of power during processing. An overbuilt A-matrix, i.e., a system response matrix, is provided. The overbuilt A-matrix uses all possible codes, e.g., all codes identified in a candidate code list (CCL) provided by blind code detection (BCD). The overbuilt A-matrix is passed to the MUD which extracts only those rows or columns required for codes that have actually been received, thus eliminating the need to recompute whitening matched filter (WMF) outputs that do not correspond to the actually received code.
Abstract:
Multi-user detection (MUD) performance is optimized to eliminate redundant use of power during processing. An overbuilt A-matrix, i.e., a system response matrix, is provided. The overbuilt A-matrix uses all possible codes, e.g., all codes identified in a candidate code list (CCL) provided by blind code detection (BCD). The overbuilt A-matrix is passed to the MUD which extracts only those rows or columns required for codes that have actually been received, thus eliminating the need to recompute whitening matched filter (WMF) outputs that do not correspond to the actually received code.
Abstract:
A receiver or an integrated circuit (IC) incorporated therein includes a fast Fourier transform (FFT)-based (or hybrid FFT-based) sliding window block level equalizer (BLE) for generating equalized samples. The BLE includes a noise power estimator, first and second channel estimators, an FFT-based chip level equalizer (CLEQ) and a channel monitor unit. The noise power estimator generates a noise power estimate based on two diverse sample data streams. The channel estimators generate respective channel estimates based on the sample data streams. The channel monitor unit generates a first channel monitor signal including truncated channel estimate vectors based on the channel estimates, and a second channel monitor signal which indicates an approximate rate of change of the truncated channel estimate vectors. The FFT-based CLEQ generates the equalized samples based on the noise power estimate, one-block samples of the first and second sample data streams, the channel estimates and the monitor signals.