Abstract:
Multi-user detection (MUD) performance is optimized to eliminate redundant use of power during processing. An overbuilt A-matrix, i.e., a system response matrix, is provided. The overbuilt A-matrix uses all possible codes, e.g., all codes identified in a candidate code list (CCL) provided by blind code detection (BCD). The overbuilt A-matrix is passed to the MUD which extracts only those rows or columns required for codes that have actually been received, thus eliminating the need to recompute whitening matched filter (WMF) outputs that do not correspond to the actually received code.
Abstract:
An apparatus and method for DFT processing using prime factor algorithm (PFA) on a selected number P of midamble chip values received by a CDMA receiver, where P has a plurality M of relatively prime factors F, and the DFT process is divided into M successive F-point DFT processes. The P data values are retrieved from a single input port memory and selectively permuted by a controller into parallel caches to optimize factoring with associated twiddle factors stored in parallel registers. The permuted inputs are factored in two or more parallel PFA circuits that comprise adders and multipliers arranged to accommodate any size F-point DFT. The outputs of the PFA circuits are processed by consolidation circuitry in preparation for output permutation of the values which are sent to memory for subsequent DFT cycles.
Abstract:
Multi-user detection (MUD) performance is optimized to eliminate redundant use of power during processing. An overbuilt A-matrix, i.e., a system response matrix, is provided. The overbuilt A-matrix uses all possible codes, e.g., all codes identified in a candidate code list (CCL) provided by blind code detection (BCD). The overbuilt A-matrix is passed to the MUD which extracts only those rows or columns required for codes that have actually been received, thus eliminating the need to recompute whitening matched filter (WMF) outputs that do not correspond to the actually received code.
Abstract:
A hermetian of a system response matrix is to be determined. Spreading codes, channel specific multipliers and channel impulse responses are provided. The channel code specific multipliers have real and imaginary values. Channel codes being a combination of a real spreading code, a complex scrambling code and a sign of the channel code specific multiplier. Real and imaginary components (JAD and AC) of an approximate hermetian of the system response matrix are determined. The channel code specific multipliers are applied to the real and imaginary components (JAD and AC) of a result of the convolutions to derive the hermetian of the system response matrix.
Abstract:
An insertion sorter circuit (200) and method are provided which are particularly useful for sorting channel response values of a communication signal. The sorter circuit includes a series of sorter elements (1501-150N) which each have a register (1011-101N). The circuit is configured to cascade values downwardly when one register receives a greater value than it has stored (1021-102N), which value is not greater than the value stored in any upstream register. At the end of processing the values, the most significant values are stored in the registers (1011-101N), the sum (105) of which are the channel power estimate. The channel noise (106) variance is obtainable by applying a system dependent scaling factor to the sum (105) of the least significant values processed.
Abstract:
Multi-user detection (MUD) performance is optimized to eliminate redundant use of power during processing. An overbuilt A-matrix, i.e., a system response matrix, is provided. The overbuilt A-matrix uses all possible codes, e.g., all codes identified in a candidate code list (CCL) provided by blind code detection (BCD). The overbuilt A-matrix is passed to the MUD which extracts only those rows or columns required for codes that have actually been received, thus eliminating the need to recompute whitening matched filter (WMF) outputs that do not correspond to the actually received code.
Abstract:
An apparatus and method for DFT processing using prime factor algorithm (PFA) on a selected number P of midamble chip values received by a CDMA receiver, where P has a plurality M of relatively prime factors F, and the DFT process is divided into M successive F-point DFT processes. The P data values are retrieved from a single input port memory and selectively permuted by a controller into parallel caches to optimize factoring with associated twiddle factors stored in parallel registers. The permuted inputs are factored in two or more parallel PFA circuits that comprise adders and multipliers arranged to accommodate any size F-point DFT. The outputs of the PFA circuits are processed by consolidation circuitry in preparation for output permutation of the values which are sent to memory for subsequent DFT cycles.
Abstract:
A method and system for performing many different types if algorithms utilizes a single mathematical engine (30) such that the mathematical engine is capable of utilizing the same multipliers for all of the algorithms. The mathematical engine includes a selectively controlled parallel output register (33), at least one selectively controlled memory (31), and a plurality of processing elements (40). The output register, the memory and the processing elements are selectively controlled depending upon the algorithm to be performed.