Abstract:
An article of manufacture includes a substrate having an outer surface clad with a metal construct including one or more continuous metal layers, at least one of which is an amorphous layer or a microcrystalline layer having a grain size below 5000 nm. A bonding layer is provided between the substrate and the layered metallic construct so that the bonding layer is in direct contact with the substrate and with the layered metallic construct. The bonding layer is made of a substantially fully cured resin including at least 10% of a rubber. The layered metallic construct has peel strength greater than 10N/cm. Also provided is a process for making the article including coating an article outer surface with a bonding layer and a layered metallic construct. The bonding layer is substantially fully cured before the layered metal construct is bonded to the article. The coated article is annealed.
Abstract:
Free standing articles or articles at least partially coated with substantially porosity free, fine-grained and/or amorphous Co-bearing metallic materials optionally containing solid particulates dispersed therein, are disclosed. The electrodeposited metallic layers and/or patches comprising Co provide, enhance or restore strength, wear and/or lubricity of substrates without reducing the fatigue performance compared to either uncoated or equivalent thickness Cr coated substrate. The fine-grained and/or amorphous metallic coatings comprising Co are particularly suited for articles exposed to thermal cycling, fatigue and other stresses and/or in applications requiring anti-microbial and hydrophobic properties.
Abstract:
Metal-clad polymer articles containing structural fine-grained and/or amorphous metallic coatings/layers optionally containing solid particulates dispersed therein, are disclosed. The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling although the coefficient of linear thermal expansion (CLTE) of the metallic layer and the substrate are mismatched. The interface between the metallic layer and the polymer is suitably pretreated to withstand thermal cycling without failure.
Abstract:
Polycrystalline materials are prepared by electrodeposition of a precursor material that is subsequently heat-treated to induce at least a threefold increase in the grain size of the material to yield a relatively high fraction of 'special' low Σ grain boundaries and a randomized crystallographic texture. The precursor metallic material has sufficient purity and a fine-grained microstructure (e.g., an average grain size of 4 nm to 5 µm). The resulting metallic material is suited to the fabrication of articles requiring high mechanical or physical isotropy and/or resistance to grain boundary-mediated deformation or degradation mechanisms.
Abstract:
An article of manufacture includes a substrate having an outer surface clad with a metal construct including one or more continuous metal layers, at least one of which is an amorphous layer or a microcrystalline layer having a grain size below 5000 nm. A bonding layer is provided between the substrate and the layered metallic construct so that the bonding layer is in direct contact with the substrate and with the layered metallic construct. The bonding layer is made of a substantially fully cured resin including at least 10% of a rubber. The layered metallic construct has peel strength greater than 10N/cm. Also provided is a process for making the article including coating an article outer surface with a bonding layer and a layered metallic construct. The bonding layer is substantially fully cured before the layered metal construct is bonded to the article. The coated article is annealed.
Abstract:
Free standing articles or articles at least partially coated with substantially porosity free, fine-grained and/or amorphous Co-bearing metallic materials optionally containing solid particulates dispersed therein, are disclosed. The electrodeposited metallic layers and/or patches comprising Co provide, enhance or restore strength, wear and/or lubricity of substrates without reducing the fatigue performance compared to either uncoated or equivalent thickness Cr coated substrate. The fine-grained and/or amorphous metallic coatings comprising Co are particularly suited for articles exposed to thermal cycling, fatigue and other stresses and/or in applications requiring anti-microbial and hydrophobic properties.
Abstract:
Metal-clad polymer articles containing structural fine-grained and/or amorphous metallic coatings/layers optionally containing solid particulates dispersed therein, are disclosed. The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling although the coefficient of linear thermal expansion (CLTE) of the metallic layer and the substrate are mismatched. The interface between the metallic layer and the polymer is suitably pretreated to withstand thermal cycling without failure.
Abstract:
Polycrystalline materials are prepared by electrodeposition of a precursor material that is subsequently heat-treated to induce at least a threefold increase in the grain size of the material to yield a relatively high fraction of 'special' low Σ grain boundaries and a randomized crystallographic texture. The precursor metallic material has sufficient purity and a fine-grained microstructure (e.g., an average grain size of 4 nm to 5 µm). The resulting metallic material is suited to the fabrication of articles requiring high mechanical or physical isotropy and/or resistance to grain boundary-mediated deformation or degradation mechanisms.