Abstract:
PROBLEM TO BE SOLVED: To provide a method of determining an overlay error between two layers of a multiple layer sample. SOLUTION: For a plurality of periodic targets that each have a first structure formed from a first layer and a second structure formed from a second layer of the sample, an optical system is employed to thereby measure an optical signal from each of the periodic targets. There are predefined offsets between the first and second structures. An overlay error between the first and second structures is determined by analyzing the measured optical signals from the periodic targets using a scatterometry overlay technique based on the predefined offsets. The optical system includes any one or more of a reflectometric system, polarimetric system, imaging system, interferometric system and/or scan angle system. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
A gallery of seed profiles is constructed and the initial parameter values associated with the profiles are selected using manufacturing process knowledge of semiconductor devices. Manufacturing process knowledge may also be used to select the best seed profile and the best set of initial parameter values as the starting point of an optimization process whereby data associated with parameter values of the profile predicted by a model is compared to measured data in order to arrive at values of the parameters. Film layers over or under the periodic structure may also be taken into account. Different radiation parameters such as the reflectivities Rs, Rp and ellipsometric parameters may be used in measuring the diffracting structures and the associated films. Some of the radiation parameters may be more sensitive to a change in the parameter value of the profile or of the films then other radiation parameters. One or more radiation parameters that are more sensitive to such changes may be selected in the above-described optimization process to arrive at a more accurate measurement. The above-described techniques may be supplied to a track/stepper and etcher to control the lithographic and etching processes in order to compensate for any errors in the profile parameters.
Abstract:
A gallery of seed profiles is constructed and the initial parameter values associated with the profiles are selected using manufacturing process knowledge of semiconductor devices. Manufacturing process knowledge may also be used to select the best seed profile and the best set of initial parameter values as the starting point of an optimization process whereby data associated with parameter values of the profile predicted by a model is compared to measured data in order to arrive at values of the parameters. Film layers over or under the periodic structure may also be taken into account. Different radiation parameters such as the reflectivities Rs, Rp and ellipsometric parameters may be used in measuring the diffracting structures and the associated films. Some of the radiation parameters may be more sensitive to a change in the parameter value of the profile or of the films then other radiation parameters. One or more radiation parameters that are more sensitive to such changes may be selected in the above-described optimization process to arrive at a more accurate measurement. The above-described techniques may be supplied to a track/stepper and etcher to control the lithographic and etching processes in order to compensate for any errors in the profile parameters.
Abstract:
Substrate processing methods and apparatus are disclosed. In some embodiments a substrate processing apparatus may comprise a support structure and a moveable stage including first and second stages. The moveable stage has one or more maglev units attached to the first stage and/or second stage proximate an edge of the first stage. The first stage retains one or more substrates and moves with respect to a first axis that is substantially fixed with respect to the second stage. The second stage translates along a second axis with respect to the support structure. In other embodiments, a primary motor may maintain a rotary stage at an angular speed and/or accelerate or decelerate the stage from a first angular speed to a second angular speed. A secondary motor may accelerate the stage from rest to the first angular speed and/or decelerate the stage from a non-zero angular speed.
Abstract:
One embodiment relates to a method in which a measuring apparatus is used to collect a first set of wave form data which depends on micro-structure of a moving surface. A correspondence is identified between the first set of wave form data and actual position data. Calibrated wave form data is stored which indicates said correspondence between the first set of wave form data and actual position data. In addition, the measuring apparatus may be used to collect a second set of wave form data which depends on micro-structure of the moving surface, a cross-correlation may be computed between the second set of wave form data and the calibrated wave form data. Another embodiment relates to an apparatus for measuring position and/or motion using surface micro-structure of a moving surface. Another embodiment relates to method for measuring motion using surface micro-structure. Other embodiments and features are also disclosed.