Abstract:
Methods and systems for calibrating the location of x-ray beam incidence onto a specimen in an x-ray scatterometry metrology system are described herein. The precise location of incidence of the illumination beam on the surface of the wafer is determined based on occlusion of the illumination beam by two or more occlusion elements. The center of the illumination beam is determined based on measured values of transmitted flux and a model of the interaction of the beam with each occlusion element. The position of the axis of rotation orienting a wafer over a range of angles of incidence is adjusted to align with the surface of wafer and intersect the illumination beam at the measurement location. A precise offset value between the normal angle of incidence of the illumination beam relative to the wafer surface and the zero angle of incidence as measured by the specimen positioning system is determined.
Abstract:
Systems and methods for accurately measuring the luminous flux and color (spectra) from light-emitting devices are disclosed. An integrating sphere may be utilized to directly receive a first portion of light emitted by a light-emitting device through an opening defined on the integrating sphere. A light collector may be utilized to collect a second portion of light emitted by the light-emitting device and direct the second portion of light into the integrating sphere through the opening defined on the integrating sphere. A spectrometer may be utilized to measure at least one property of the first portion and the second portion of light received by the integrating sphere.
Abstract:
Methods and systems for positioning a specimen and characterizing an x-ray beam incident onto the specimen in a Transmission, Small-Angle X-ray Scatterometry (T-SAXS) metrology system are described herein. A specimen positioning system locates a wafer vertically and actively positions the wafer in six degrees of freedom with respect to the x-ray illumination beam without attenuating the transmitted radiation. In some embodiments, a cylindrically shaped occlusion element is scanned across the illumination beam while the detected intensity of the transmitted flux is measured to precisely locate the beam center. In some other embodiments, a periodic calibration target is employed to precisely locate the beam center. The periodic calibration target includes one or more spatially defined zones having different periodic structures that diffract X-ray illumination light into distinct, measurable diffraction patterns.
Abstract:
An electron beam detection apparatus includes a first aperture element including a first set of apertures. The apparatus includes a second aperture element including a second set of apertures. The second set of apertures is arranged in a pattern corresponding with the pattern of the first plurality of apertures. The detection apparatus includes an electron-photon conversion element configured to receive electrons of the electron beam transmitted through the first and second aperture elements. The electron-photon conversion element is configured to generate photons in response to the received electrons. The detection apparatus includes an optical assembly including one or more optical elements. The detection apparatus includes a detector assembly. The optical elements of the optical assembly are configured to direct the generated photons from the electron-photon conversion system to the detector assembly.