1.
    发明专利
    未知

    公开(公告)号:DE19643903B4

    公开(公告)日:2006-07-06

    申请号:DE19643903

    申请日:1996-10-30

    Abstract: An improved method for fabricating a heterojunction bipolar transistor which includes the steps of forming a buried collector, a collector thin film, and a collector sinker on a semiconductor substrate in order, forming a first silicon oxide film, a base electrode polysilicon layer, a nitride film, and an oxidation film on a resulting substrate exposing the first silicon oxidation film, forming a spacer insulation film at the lateral side of the exposed region, and defining an activation region, exposing the collector thin film of the activation region using a mask, and forming an auxiliary lateral film for an isolation of the device, forming a selective collector region by ion-implantating a dopant to the activation region which is limited by the auxiliary lateral film, removing the auxiliary lateral film, etching the exposed portion in an anisotropic etching method, and forming a shallow trench for a device isolation, forming a polysilicon lateral film to have a height which is the same as the height of the base electrode polysilicon layer on the shallow trench, and forming a self-aligned base.

    2.
    发明专利
    未知

    公开(公告)号:DE4444776C2

    公开(公告)日:2001-08-16

    申请号:DE4444776

    申请日:1994-12-15

    Abstract: Disclosed is a fabrication of a bipolar transistor with a super self-aligned vertical structure in which emitter, base and collector are vertically self-aligned, the fabrication method comprising the steps of forming a conductive buried collector region in a silicon substrate by using ion-implantation of an impurity and thermal-annealing; sequentially forming several layers; selectively removing the nitride and polysilicon layers to form a pattern; sequentially forming a silicon oxide layer, a third layer and a silicon oxide layer thereon; forming a patterned photoresist layer thereon to define active and inactive regions and removing several layers on the active region to form an opening; forming a side wall on both sides of the opening; forming a collector on a surface portion of the buried collector region up to a lower surface of the polysilicon layer; removing the side wall and the third nitride layer to expose a side surface of the second polysilicon layer; selectively forming a base on an upper surface of the collector including a side surface of the polysilicon layer; forming side wall oxide layer on both sides of the base and the silicon oxide to define an emitter region; forming an emitter on the base; and forming electrodes thereon. In the method, an active region is defined by a photolithography, and thereby a trench isolation acting as factors of lowering in integration and device-performance can be omitted in the method. As a result, fabrication sequence can be simplified and integration can be improved.

    3.
    发明专利
    未知

    公开(公告)号:DE4445346C2

    公开(公告)日:2001-08-23

    申请号:DE4445346

    申请日:1994-12-19

    Abstract: Disclosed is a fabrication of a hetero-junction bipolar transistor in which a base parasitic capacitance is fully reduced by using a metallic silicide as a base, comprising the steps of injecting an impurity in a silicon substrate to form a conductive buried collector region; growing a collector epitaxial layer on the buried collector region and forming a field oxide layer; selectively injecting an impurity into the collector epitaxial layer to form a collector sinker; sequentially forming a base layer and an first oxide layer thereon; patterning the first oxide layer to define an extrinsic base region; ion-implanting an impurity in the extrinsic base region using a patterned oxide layer as a mask and removing the patterned oxide layer; depositing a metallic silicide film thereon to form a base electrode thin film; forming a capping oxide layer of about 500 ANGSTROM thickness only on the base electrode thin film; forming an isolating oxide layer thereon and sequentially and selectively removing the isolating oxide layer, the capping oxide layer, the base electrode thin film and the base layer using a patterned photomask to form a pattern, the isolating oxide layer being provided to electrically isolate base and emitter; forming a side wall oxide layer at both side edges of the pattern; removing a portion of the isolating oxide layer to define an emitter region; forming a passivation layer thereon and selectively removing the passivation layer to form contact holes; and depositing a polysilicon layer doped with impurity ions in the contact holes to form electrodes.

    4.
    发明专利
    未知

    公开(公告)号:DE4444609C2

    公开(公告)日:2001-08-02

    申请号:DE4444609

    申请日:1994-12-14

    Abstract: Disclosed is a device isolating method of a semiconductor device, comprising the steps of sequentially forming a pad oxide film, a polysilicon film and an insulating layer, on a silicon substrate, said insulating layer being composed of a first silicon oxide film, a nitride film and a second silicon oxide film formed sequentially on the polysilicon film; defining active and inactive regions by using a patterned photomask; removing the insulating layer only on the inactive region so as to expose a surface of the polysilicon film; forming a side wall at both edges of the insulating layer on the active region, said side wall being composed of a nitride film; depositing a third silicon oxide film on the surface of the polysilicon film; removing the side wall and etching the substrate to a predetermined depth to form a trench; filling an insulating material into the trench and depositing it up to the second silicon oxide so as to form an insulating film for isolating; simultaneously removing the second silicon oxide film and the silicon oxide film and removing the polysilicon film only the inactive region; performing a thermal oxidation to form a field oxide film on the inactive region; and sequentially removing the isolating layer and the polysilicon film formed on the active region. Because the active region is defined using an insulator-filled shallow trench before performing thermal oxidation, no oxygen is penetrated into the active region during the thermal oxidation, whereby a field oxide film can be formed without occurrence of a Bird's beak.

    5.
    发明专利
    未知

    公开(公告)号:DE4445345C2

    公开(公告)日:2001-08-23

    申请号:DE4445345

    申请日:1994-12-19

    Abstract: Disclosed is a fabrication of a bipolar transistor using an enhanced trench isolation so as to improve integration and performance thereof, comprising the steps of sequentially etching back portions corresponding to a trench using a trench forming mask to a predetermined depth of the buried collector to form the trench; filling an isolation insulating layer into the trench; polishing the isolation insulating layer up to a surface of the silicon oxide layer; sequentially forming a second insulating layer on the isolating insulating layer and the silicon oxide layer; removing the first polysilicon layer and the first insulating layer formed on an inactive region other than an active region defined by the trench; thermal-oxidizing the collector layer formed on the inactive region to form a thermal oxide layer; removing the second insulating layer and sequentially forming a third polysilicon, a third insulating layer and a second nitride layer; etching back layers formed on a portion of the first insulating layer to form an opening in the active region; forming a first side wall on both edges of the opening and removing the first insulating layer; forming an intrinsic base at a region where the first insulating layer is removed to electrically connect the intrinsic base with an extrinsic base in self-alignment; forming a second side wall on both sides of the first side wall; and forming an emitter layer on the intrinsic base.

    Fabricating hetero-junction bipolar transistors

    公开(公告)号:GB2296375B

    公开(公告)日:1998-06-24

    申请号:GB9425590

    申请日:1994-12-19

    Abstract: Disclosed is a fabrication of a hetero-junction bipolar transistor in which a base parasitic capacitance is fully reduced by using a metallic silicide as a base, comprising the steps of injecting an impurity in a silicon substrate to form a conductive buried collector region; growing a collector epitaxial layer on the buried collector region and forming a field oxide layer; selectively injecting an impurity into the collector epitaxial layer to form a collector sinker; sequentially forming a base layer and an first oxide layer thereon; patterning the first oxide layer to define an extrinsic base region; ion-implanting an impurity in the extrinsic base region using a patterned oxide layer as a mask and removing the patterned oxide layer; depositing a metallic silicide film thereon to form a base electrode thin film; forming a capping oxide layer of about 500 ANGSTROM thickness only on the base electrode thin film; forming an isolating oxide layer thereon and sequentially and selectively removing the isolating oxide layer, the capping oxide layer, the base electrode thin film and the base layer using a patterned photomask to form a pattern, the isolating oxide layer being provided to electrically isolate base and emitter; forming a side wall oxide layer at both side edges of the pattern; removing a portion of the isolating oxide layer to define an emitter region; forming a passivation layer thereon and selectively removing the passivation layer to form contact holes; and depositing a polysilicon layer doped with impurity ions in the contact holes to form electrodes.

    8.
    发明专利
    未知

    公开(公告)号:DE4444609A1

    公开(公告)日:1996-05-30

    申请号:DE4444609

    申请日:1994-12-14

    Abstract: The method comprises the steps of forming a trench in a substrate 51 to separate an active region from an inactive region, filling the trench with an oxidisation blocking material 59, capping the active region to prevent oxidisation thereof and oxidising to form a field oxide film 50 in the inactive region. No oxygen penetrates into the active region during the oxidation whereby a field oxide film can be formed without occurrence of a bird's beak. This enables fabrication of the semiconductor devices required for the production of memories of 1Gb or more. Two distinct methods are disclosed with reference to Figs 5a to 5j and 6a to 6h respectively. In the first, inactive and active regions are first formed using a photomask and the trench is subsequently formed. The oxidisation blocking material is then formed to fill the trench and cover the sidewall of the active region. In the second, inactive and active regions are defined by using a trench mask. The oxidisation blocking material is then formed to fill the trench and cover the inactive and active regions after which it is removed from these regions by polishing.

    Forming a field oxide layer to isolate semiconductor devices

    公开(公告)号:GB2295487A

    公开(公告)日:1996-05-29

    申请号:GB9425223

    申请日:1994-12-14

    Abstract: Disclosed is a device isolating method of a semiconductor device, comprising the steps of sequentially forming a pad oxide film, a polysilicon film and an insulating layer, on a silicon substrate, said insulating layer being composed of a first silicon oxide film, a nitride film and a second silicon oxide film formed sequentially on the polysilicon film; defining active and inactive regions by using a patterned photomask; removing the insulating layer only on the inactive region so as to expose a surface of the polysilicon film; forming a side wall at both edges of the insulating layer on the active region, said side wall being composed of a nitride film; depositing a third silicon oxide film on the surface of the polysilicon film; removing the side wall and etching the substrate to a predetermined depth to form a trench; filling an insulating material into the trench and depositing it up to the second silicon oxide so as to form an insulating film for isolating; simultaneously removing the second silicon oxide film and the silicon oxide film and removing the polysilicon film only the inactive region; performing a thermal oxidation to form a field oxide film on the inactive region; and sequentially removing the isolating layer and the polysilicon film formed on the active region. Because the active region is defined using an insulator-filled shallow trench before performing thermal oxidation, no oxygen is penetrated into the active region during the thermal oxidation, whereby a field oxide film can be formed without occurrence of a Bird's beak.

    10.
    发明专利
    未知

    公开(公告)号:DE4445345A1

    公开(公告)日:1996-06-27

    申请号:DE4445345

    申请日:1994-12-19

    Abstract: Disclosed is a fabrication of a bipolar transistor using an enhanced trench isolation so as to improve integration and performance thereof, comprising the steps of sequentially etching back portions corresponding to a trench using a trench forming mask to a predetermined depth of the buried collector to form the trench; filling an isolation insulating layer into the trench; polishing the isolation insulating layer up to a surface of the silicon oxide layer; sequentially forming a second insulating layer on the isolating insulating layer and the silicon oxide layer; removing the first polysilicon layer and the first insulating layer formed on an inactive region other than an active region defined by the trench; thermal-oxidizing the collector layer formed on the inactive region to form a thermal oxide layer; removing the second insulating layer and sequentially forming a third polysilicon, a third insulating layer and a second nitride layer; etching back layers formed on a portion of the first insulating layer to form an opening in the active region; forming a first side wall on both edges of the opening and removing the first insulating layer; forming an intrinsic base at a region where the first insulating layer is removed to electrically connect the intrinsic base with an extrinsic base in self-alignment; forming a second side wall on both sides of the first side wall; and forming an emitter layer on the intrinsic base.

Patent Agency Ranking