Abstract:
The present invention provides a non-volatile phase change memory cell containing an electrode contact layer disposed between a metal electrode layer and a phase change material layer, the electrode contact layer being formed of a transparent conducting oxide-based material which has a high electric conductivity, a low thermal conductivity and a good thermal stability. A non-volatile phase change memory cell according to the present invention may be utilized to reduce the electric power needed for reset and set operation.
Abstract:
A phase change memory apparatus includes a phase change memory array in which a plurality of phase change memory devices are arranged, and a pulse generator that supplies a writing current pulse, an erasure current pulse, and a reverse repair current pulse to the phase change memory devices in the phase change memory array. The reverse repair current pulse has opposite direction to the writing current pulse and the erasure current pulse of the phase change memory devices, and is of such a size that resultant Joule heat and electromigration move the elements of the reverse repair current pulse. The reverse repair current pulse has a width equal to or more than a smaller one of duration of a normal writing operation and duration of a normal erasure operation.
Abstract:
Provided is a surface plasmon resonance sensor including: a part of delivering light by which a signal beam is incident to generate an evanescent field; and a part of exciting surface plasmon for exciting surface plasmons by the generated evanescent field and giving rise to a surface plasmon resonance, wherein a dielectric waveguide layer is inserted between metal layers of the part of exciting surface plasmon, and surface plasmon resonance properties are changed by an object to be analyzed.
Abstract:
The present invention provides a phase change non-volatile memory material comprising a base material and at least one non-metallic light element selected from the group consisting of boron, carbon, nitrogen and oxygen, wherein the base material has a composition which corresponds to either that of congruent melting of the type with a minimum melting point or that of eutectic melting within the range of ±0.15 atomic fraction for each constituent element, thereby having a melting temperature of 600°C or lower. The phase change non-volatile memory material according to the present invention may be utilized to reduce the electric power needed for reset/set operation and thermal interference between memory cells.
Abstract:
The present invention relates to a high sensitivity localized surface plasmon resonance sensor and to a sensor system using same, the sensor comprising: a first metal layer including a first metal; a second metal layer arranged parallel to the first metal layer and including a second metal; and a conductive cross-linking layer disposed between the first metal layer and the second metal layer, and made of a third metal with a corrosion response that is different than that of the first metal and of the second metal.