Abstract:
A digital adjusting signal for adjusting a multi-channel SQUID system is transmitted only to a control circuit module including a SQUID channel selected in an embodiment of the present invention and not transmitted to other modules. Accordingly, the digital adjusting signal is prevented from flowing into all SQUID adjusting channels to minimize noise generated by the digital adjusting circuit of the SQUID channel and to stably control the SQUID sensor without malfunction.
Abstract:
Provided are an apparatus and a method for canceling magnetic fields. The apparatus includes a magnetic field canceling coil disposed adjacent to an inner wall of a magnetic shield room to surround the entire inner space or a portion of an inner space of the magnetic shield room; and a magnetic field canceling coil driver to supply current to the magnetic field canceling coil. The magnetic field canceling coil cancels a prepolarization magnetic field established on the wall of the magnetic shield room by a prepolarization coil disposed in the center of the magnetic shield room to minimize magnetic interference caused by the magnetic shield room.
Abstract:
The present invention provides a magnetic monitoring system for imaging, monitoring, scanning or mapping for brain or heart activity of subjects including children and adults, the system comprising of a magnetoencephalographic or magnetocardiographic system incorporating SQUID sensors for measuring brain activity or heart activity, the system including a plurality of Dewar helmets of variable sizes and shapes; and a plurality of monitoring interfaces; wherein the sensor system helmet is moveable by horizontal Dewar rotation. The sensor system includes configurations where the size and shape of helmets in the system may be different to accommodate different sized subjects for monitoring simultaneously.
Abstract:
Provided is a data synchronization apparatus. The data synchronization apparatus includes a signal conversion block converting individual serial digital signals into parallel digital signals in response to a load signal and converting the parallel digital signals into synchronized serial digital signals in response to a synchronization load signal which does not overlap the load signal, a clock/load signal generator outputting a reference load signal for generating the synchronization load signal to the signal conversion block, a multiplexer multiplexing the synchronized serial digital signals, and a first serial-to-parallel (S/P) converting the multiplexed signal into parallel signals.
Abstract:
Provided are a signal processing apparatus and a signal processing method. The signal processing method include receiving a serial signal including an information frame including channel information and data information of a corresponding channel, extracting a clock signal from the serial signal, generating a load signal when a clock count reaches a maximum clock count by calculating the clock signal; converting the serial signal to a parallel signal according to the load signal, and changing the maximum clock count by comparing parallel-converted parallel channel information with a load count indicating the number of local signals.