Abstract:
A dual-helmet magnetoencephalography measuring apparatus according to an example embodiment includes: an internal container storing a liquid refrigerant; an external container disposed to surround the internal container and including a first external helmet and a second external helmet disposed to be spaced apart from each other; a first sensor-mounted helmet disposed between the external container and the internal container to surround the first external helmet; a second sensor-mounted helmet disposed between the external container and the internal container to surround the second external helmet; a plurality of first SQUID sensor modules disposed on the first sensor-mounted helmet; and a plurality of second SQUID sensor modules disposed on the second sensor-mounted helmet. The internal container and the external container are tilted in a vertical direction.
Abstract:
The present invention provides a magnetic monitoring system for imaging, monitoring, scanning or mapping for brain or heart activity of subjects including children and adults, the system comprising of a magnetoencephalographic or magnetocardiographic system incorporating SQUID sensors for measuring brain activity or heart activity, the system including a plurality of Dewar helmets of variable sizes and shapes; and a plurality of monitoring interfaces; wherein the sensor system helmet is moveable by horizontal Dewar rotation. The sensor system includes configurations where the size and shape of helmets in the system may be different to accommodate different sized subjects for monitoring simultaneously.
Abstract:
A magnetoencephalography (MEG) measuring apparatus and an MEG measuring method. The MEG measuring apparatus includes a superconducting helmet having an inward brim, a sensor-equipped helmet disposed inside the superconducting helmet, a pick-up coil disposed inside the sensor-equipped helmet, and a superconducting quantum interference device (SQUID) sensor mounted on the sensor-equipped helmet and connected to the pick-up coil.
Abstract:
Provided are a low-field nuclear magnetic resonance device and a low-field nuclear magnetic resonance method. The low-field nuclear magnetic resonance device includes a dynamic nuclear polarization (DNP) amplification unit to amplify the nuclear polarization of hydrogen atoms of water using a DNP-possible substance (DNP substance) to provide the amplified nuclear polarization to a measurement target, a sensor unit to measure a magnetic resonance signal of the measurement target using a SQUID sensor or an optically-pumped atomic magnetometer, and a measurement field coil to apply a measurement field to the measurement target. The DNP amplification unit is separated from the measurement target, the sensor unit, and the measurement field coil.
Abstract:
Provided are a low-temperature cooling apparatus and a superconducting quantum interference device (SQUID) sensor module. The low-temperature cooling apparatus includes an outer container; an inner container disposed inside the outer container, the inner container including a neck portion having a first diameter and a body portion having a second diameter greater than the first diameter; an insert inserted into the neck portion of the inner container; and a plurality of SQUID sensor modules inserted into the body portion of the inner container. Each of the SQUID sensor modules is in the form of a fan-shaped pillar and is fixedly coupled with an inner bottom plate of the inner container.
Abstract:
Superconducting quantum interference device (SQUID) sensor module and a magnetoencephalography (MEG) measuring apparatus. The SQUID sensor module includes a fixed block having one end fixed to the sensor-mounted helmet, a bobbin having one end combined with the other end of the fixed block and having a groove in which a pick-up coil is wound, a bobbin fixing or attachment structure or material fixed to the other end of the fixed block via a through-hole formed in the center of the bobbin, a SQUID printed circuit board (PCB) disposed one an upper side surface of the bobbin and including a SQUID sensor, and a signal line connection PCB inserted into an outer circumferential surface of the fixed block and adapted to transmit a signal detected in the SQUID sensor to an external circuit.
Abstract:
A cryocooler superconducting quantum interference (SQUID) system includes a cryocooler including a cold head, a cold head chamber in which the cold head is disposed, a sensor chamber including a SQUID sensor cooled to a low temperature by the cryocooler; and a connection block connecting the cold head and a thermal anchor disposed in the sensor chamber to each other to cool the SQUID sensor in the sensor chamber.
Abstract:
An apparatus and a method for indirectly cooling a superconducting quantum interference device (SQUID) are provided. The apparatus includes an outer container extending in a vertical direction; a metallic inner container inserted into the outer container to store a liquid coolant, the metal inner container including a top plate; a SQUID sensor module disposed between a bottom surface of the outer container and a bottom surface of the inner container; a heat transfer pillar adapted to cool the SQUID sensor module, the heat transfer pillar having one end connected to the bottom surface of the inner container and the other end directly or indirectly connected to the SQUID sensor module; a magnetic shield part formed of a superconductor covering a top surface of the SQUID sensor module; and a heat conduction plate being in thermal contact with the other end of the heat transfer pillar.
Abstract:
Provided are an apparatus and a method for canceling magnetic fields. The apparatus includes a magnetic field canceling coil disposed adjacent to an inner wall of a magnetic shield room to surround the entire inner space or a portion of an inner space of the magnetic shield room; and a magnetic field canceling coil driver to supply current to the magnetic field canceling coil. The magnetic field canceling coil cancels a prepolarization magnetic field established on the wall of the magnetic shield room by a prepolarization coil disposed in the center of the magnetic shield room to minimize magnetic interference caused by the magnetic shield room.
Abstract:
An apparatus and a method for indirectly cooling a superconducting quantum interference device (SQUID) are provided. The apparatus includes an outer container extending in a vertical direction; a metallic inner container inserted into the outer container to store a liquid coolant, the metal inner container including a top plate; a SQUID sensor module disposed between a bottom surface of the outer container and a bottom surface of the inner container; a heat transfer pillar adapted to cool the SQUID sensor module, the heat transfer pillar having one end connected to the bottom surface of the inner container and the other end directly or indirectly connected to the SQUID sensor module; a magnetic shield part formed of a superconductor covering a top surface of the SQUID sensor module; and a heat conduction plate being in thermal contact with the other end of the heat transfer pillar.