Abstract:
A method and system for estimating traffic signals. The method and system can include constructing trajectories of probe vehicles from GPS data emitted by the probe vehicles, estimating traffic signal cycles, combining the estimates, and computing the traffic signal timing by maximizing a scoring function based on the estimates. Estimating traffic signal cycles can be based on transition times of the probe vehicles starting after a traffic signal turns green.
Abstract:
A method, system, and sensor for air flow sensing. The system can include a cantilever, a transducer, and a processing module. The method can include measuring beam deflections of one or more cantilevers, extracting information about air flow, and determining one or more of an airspeed, an angle of attack, and a sideslip, based on extracted information. The system and method can exploit nonlinearities in the behavior of the cantilever in fluid flow.
Abstract:
An apparatus, system, and method for traffic monitory can have a Lagrangian inertial measurement unit. The Lagrangian inertial measurement unit can have a processor, an accelerometer, a gyroscope, and/or a wireless transmitter. The processor can have an integrated direction cosine matrix. The accelerometer can be configured to measure linear accelerations of a vehicle and/or can communicate measured linear acceleration to the processor. The gyroscope can be configured to measure rotational accelerations of the vehicle and/or can communicate measured rotational acceleration to the processor. The processor can be configured to calculate estimated vehicle speed and/or estimated vehicle attitude. The wireless transmitter can be configured to wirelessly transmit estimated vehicle speed and/or estimated vehicle attitude. The apparatus, system, and method can be integrated with a wireless sensor network.
Abstract:
Systems and methods to protect the flight envelope in both manual flight and flight by a commercial autopilot are provided. A system can comprise: an inertial measurement unit (IMU); a computing device in data communication with the IMU; an application executable by the computing device comprising: logic that estimates an angle of attack; a slip angle; and a speed of an unmanned aerial vehicle (UAV) based at least in part on data received from the UAV. A method can comprise estimating, via a computing device, flight data of a UAV based at least in part on data received from an IMU; comparing the estimated flight data with measured flight data; and triggering an error indication in response to a determination that the measured flight data exceeds a predefined deviation of the estimated flight data. The estimated speed can comprise an estimated airspeed, vertical speed and/or ground velocity.
Abstract:
A weather measurement system can include an aerial vehicle. An array of accelerometers can be disposed across the surface of the aerial vehicle. The accelerometers can be configured to measure raindrops impacting the surface. The measurements can include number per unit time and intensity. The system can include a processing unit configured to receive measurement data from the array and to process the measurement data into preprocessed data.
Abstract:
A traffic monitoring system and method for mapping traffic speed and density while preserving privacy. The system can include fixed stations that make up a network and mobile probes that are associated with vehicles. The system and method do not gather, store, or transmit any unique or identifying information, and thereby preserves the privacy of members of traffic. The system and method provide real-time traffic density and speed mapping. The system and method can further be integrated with a complementary flood monitoring system and method.
Abstract:
A traffic monitoring system and method for mapping traffic speed and density while preserving privacy. The system can include fixed stations that make up a network and mobile probes that are associated with vehicles. The system and method do not gather, store, or transmit any unique or identifying information, and thereby preserves the privacy of members of traffic. The system and method provide real-time traffic density and speed mapping. The system and method can further be integrated with a complementary flood monitoring system and method.
Abstract:
An apparatus, system, and method for monitoring traffic and roadway water conditions. Traffic flow and roadway flooding is monitored concurrently through a wireless sensor network. The apparatus and system comprises ultrasound rangefinders monitoring traffic flow, flood water conditions, or both. Routing information may be calculated from the traffic conditions, such that routes are calculated to avoid roadways that are impassable or are slow due to traffic conditions.
Abstract:
An apparatus, system, and method for monitoring traffic and roadway water conditions. Traffic flow and roadway flooding is monitored concurrently through a wireless sensor network. The apparatus and system comprises ultrasound rangefinders monitoring traffic flow, flood water conditions, or both. Routing information may be calculated from the traffic conditions, such that routes are calculated to avoid roadways that are impassable or are slow due to traffic conditions.
Abstract:
An apparatus, system, and method for traffic monitory can have a Lagrangian inertial measurement unit. The Lagrangian inertial measurement unit can have a processor, an accelerometer, a gyroscope, and/or a wireless transmitter. The processor can have an integrated direction cosine matrix. The accelerometer can be configured to measure linear accelerations of a vehicle and/or can communicate measured linear acceleration to the processor. The gyroscope can be configured to measure rotational accelerations of the vehicle and/or can communicate measured rotational acceleration to the processor. The processor can be configured to calculate estimated vehicle speed and/or estimated vehicle attitude. The wireless transmitter can be configured to wirelessly transmit estimated vehicle speed and/or estimated vehicle attitude. The apparatus, system, and method can be integrated with a wireless sensor network.