Abstract:
A method for calculating a process center for a chuck in a processing chamber is provided. The method includes generating pre-processing and post-processing measurement data points, which is perform by measuring thickness of a film substrate at a set of orientations and a set of distances from a geometric center of the substrate. The method also includes comparing the pre-processing and post-processing measurement data points to calculate a set of etch depth numbers. The method further includes generating etch profiles for the set of orientations. The method yet also includes extrapolating a set of radiuses, which is associated with a first etch depth, from the etch profiles. The method yet further includes generating an off-centered plot, which is a graphical representation of the set of radiuses versus the set of orientations. The method more over includes calculating the process center by applying a curve-fitting equation to the off-centered plot.
Abstract:
A bevel inspection module for capturing images of a substrate is provided. The module includes a rotational motor, which is attached to a substrate chuck and is configured to rotate the substrate chuck thereby allowing the substrate to revolve. The module further includes a camera and an optic enclosure, which is attached to the camera and is configured to rotate, enabling light to be directed toward the substrate. The camera is mounted from a camera mount, which is configured to enable the camera to rotate on a 180 degree plane allowing the camera to capture images of at least one of a top view, a bottom view, and a side view of the substrate. The module yet also includes a backlight arrangement, which is configured to provide illumination to the substrate, thereby enabling the camera to capture the images, which shows contrast between the substrate and a background.
Abstract:
A method for etching a bevel edge of a substrate is provided. A patterned photoresist mask is formed over the etch layer. The bevel edge is cleaned comprising providing a cleaning gas comprising at least one of a CO 2 , CO, C x H y , H 2 , NH 3 , C x H y F z and a combination thereof, forming a cleaning plasma from the cleaning gas, and exposing the bevel edge to the cleaning plasma. Features are etched into the etch layer through the photoresist features and the photoresist mask is removed.
Abstract translation:提供了一种用于蚀刻衬底的斜面边缘的方法。 在蚀刻层上形成图案化的光刻胶掩模。 清洁斜面边缘包括提供清洁气体,所述清洁气体包括CO 2,CO,C H y ,H 2 sub>,NH 3 sub>, x h y sub> f z sub>及其组合, 来自清洁气体的清洁等离子体,并且将斜面边缘暴露于清洁等离子体。 通过光刻胶特征将特征蚀刻到蚀刻层中,并且去除光刻胶掩模。
Abstract:
A method for aligning a substrate to a process center of a support mechanism is provided. The method includes determining substrate thickness after substrate processing at a plurality of orientations and at a plurality of radial distances from a geometric center of the substrate. The method also includes deriving a set of process rate values from substrate thickness and process duration. The method further includes creating for a process rate an off-centered plot, which represents a substantially concentric circle whose points are a circumference of the off-centered plot having substantially the first process rate. The method yet also includes applying a curve-fitting equation to the off-centered plot to determine a set of parameters. The method yet further includes teaching a set of robot arms the set of parameters, thereby enabling the set of robot arms to align another substrate that is supported by the support mechanism with the process center.
Abstract:
Methods and apparatus for remedying arc-related damage to the substrate during plasma bevel etching. A plasma shield is disposed above the substrate to prevent plasma, which is generated in between two annular grounded plates, from reaching the exposed metallization on the substrate. Additionally or alternatively, a carbon-free fluorinated process source gas may be employed and/or the RF bias power may be ramped up gradually during plasma generation to alleviate arc-related damage during bevel etching. Also additionally or alternatively, helium and/or hydrogen may be added to the process source gas to alleviate arc-related damage during bevel etching.
Abstract:
A method and apparatus for processing a bevel edge is provided. A substrate is placed in a bevel processing chamber and a passivation layer is formed on the substrate only around a bevel region of the substrate using a passivation plasma confined in a peripheral region of the bevel processing chamber. The substrate may undergo a subsequent semiconductor process, during which the bevel edge region of the substrate is protected by the passivation layer. Alternatively, the passivation layer may be patterned using a patterning plasma formed in an outer peripheral region of the processing chamber, the patterning plasma being confined by increasing plasma confinement. The passivation layer on outer edge portion of the bevel region is removed, while the passivation layer on an inner portion of the bevel region is maintained. The bevel edge of the substrate may be cleaned using the patterned passivation layer as a protective mask.
Abstract:
Methods and systems to optimize wafer placement repeatability in semiconductor manufacturing equipment using a controlled series of wafer movements are provided. In one embodiment, a preliminary station calibration is performed to teach a robot position for each station interfaced to facets of a vacuum transfer module used in semiconductor manufacturing. The method also calibrates the system to obtain compensation parameters that take into account the station where the wafer is to be placed, position of sensors in each facet, and offsets derived from performing extend and retract operations of a robot arm. In another embodiment where the robot includes two arms, the method calibrates the system to compensate for differences derived from using one arm or the other. During manufacturing, the wafers are placed in the different stations using the compensation parameters.
Abstract:
A bevel inspection module for capturing images of a substrate is provided. The module includes a rotational motor, which is attached to a substrate chuck and is configured to rotate the substrate chuck thereby allowing the substrate to revolve. The module further includes a camera and an optic enclosure, which is attached to the camera and is configured to rotate, enabling light to be directed toward the substrate. The camera is mounted from a camera mount, which is configured to enable the camera to rotate on a 180 degree plane allowing the camera to capture images of at least one of a top view, a bottom view, and a side view of the substrate. The module yet also includes a backlight arrangement, which is configured to provide illumination to the substrate, thereby enabling the camera to capture the images, which shows contrast between the substrate and a background.
Abstract:
A lower electrode plate receives radiofrequency power. A first upper plate is positioned parallel to and spaced apart from the lower electrode plate. A grounded second upper plate is positioned next to the first upper plate. A dielectric support provides support of a workpiece within a region between the lower electrode plate and the first upper plate. A purge gas is supplied at a central location of the first upper plate. A process gas is supplied to a periphery of the first upper plate. The dielectric support positions the workpiece proximate and parallel to the first upper plate, such that the purge gas flows over a top surface of the workpiece so as to prevent the process gas from flowing over the top surface of the workpiece, and so as to cause the process gas to flow around a peripheral edge of the workpiece and below the workpiece.
Abstract:
A method and apparatus for processing a bevel edge is provided. A substrate is placed in a bevel processing chamber and a passivation layer is formed on the substrate only around a bevel region of the substrate using a passivation plasma confined in a peripheral region of the bevel processing chamber. The substrate may undergo a subsequent semiconductor process, during which the bevel edge region of the substrate is protected by the passivation layer. Alternatively, the passivation layer may be patterned using a patterning plasma formed in an outer peripheral region of the processing chamber, the patterning plasma being confined by increasing plasma confinement. The passivation layer on outer edge portion of the bevel region is removed, while the passivation layer on an inner portion of the bevel region is maintained. The bevel edge of the substrate may be cleaned using the patterned passivation layer as a protective mask.