Abstract:
A method of cleaning a bevel edge of a semiconductor substrate is provided. A semiconductor substrate is placed on a substrate support in a reaction chamber of a plasma processing apparatus. The substrate has a dielectric layer overlying a top surface and a bevel edge of the substrate, the layer extending above and below an apex of the bevel edge. A process gas is introduced into the reaction chamber and energized into a plasma. The bevel edge is cleaned with the plasma so as to remove the layer below the apex without removing all of the layer above the apex.
Abstract:
CONTROL OF BEVEL ETCH FILM PROFILE USING PLASMA EXCLUSION ZONE RINGS LARGER THAN THE WAFER DIAMETERA method of cleaning a bevel edge of a semiconductor substrate is provided. A semiconductor substrate is placed on a substrate support in a reaction chamber of a plasma processing apparatus. The substrate has a dielectric layer overlying a top surface and a bevel edge of the substrate, the layer extending above and below an apex of the bevel edge. A process gas is introduced into the reaction chamber and energized into a plasma. The bevel edge is cleaned with the plasma so as to remove the layer below the apex without removing all of the layer above the apex.FIG. 1
Abstract:
A lower electrode plate receives radiofrequency power. A first upper plate is positioned parallel to and spaced apart from the lower electrode plate. A grounded second upper plate is positioned next to the first upper plate. A dielectric support provides support of a workpiece within a region between the lower electrode plate and the first upper plate. A purge gas is supplied at a central location of the first upper plate. A process gas is supplied to a periphery of the first upper plate. The dielectric support positions the workpiece proximate and parallel to the first upper plate, such that the purge gas flows over a top surface of the workpiece so as to prevent the process gas from flowing over the top surface of the workpiece, and so as to cause the process gas to flow around a peripheral edge of the workpiece and below the workpiece.
Abstract:
A substrate processing system for processing a substrate includes an upper plasma exclusion zone ring arranged above a substrate during plasma treatment of a bevel edge of the substrate. An upper electrode is arranged above the substrate during plasma treatment. A lower plasma exclusion zone ring is at least partially arranged below the substrate during the plasma treatment. A lower electrode is at least partially arranged below the substrate during plasma treatment. The lower plasma exclusion zone ring includes an annular body with a lower portion at least partially arranged below the substrate and an upwardly projecting flange extending upwardly from the lower portion of the annular body at a location spaced from a radially outer edge of the substrate. The upwardly projecting flange includes an uppermost surface extending to one of a middle portion of the substrate in a vertical direction and above the middle portion of the substrate.
Abstract:
A lower electrode plate receives radiofrequency power. A first upper plate is positioned parallel to and spaced apart from the lower electrode plate. A grounded second upper plate is positioned next to the first upper plate. A dielectric support provides support of a workpiece within a region between the lower electrode plate and the first upper plate. A purge gas is supplied at a central location of the first upper plate. A process gas is supplied to a periphery of the first upper plate. The dielectric support positions the workpiece proximate and parallel to the first upper plate, such that the purge gas flows over a top surface of the workpiece so as to prevent the process gas from flowing over the top surface of the workpiece, and so as to cause the process gas to flow around a peripheral edge of the workpiece and below the workpiece.