Abstract:
A method etching features through a stack of a silicon nitride layer over a silicon layer over a silicon oxide layer in a plasma processing chamber is provided. The silicon nitride layer is etched in the plasma processing chamber, comprising; flowing a silicon nitride etch gas; forming the silicon nitride etch gas into a plasma to etch the silicon nitride layer, and stopping the flow of the silicon nitride etch gas. The silicon layer is, comprising flowing a silicon etchgas, wherein the silicon etch gas comprises SF6 or SiF4, forming the silicon etch gas into a, and stopping the flow of the silicon etch gas. The silicon oxide layer is etched in the plasma processing chamber, comprising flowing a silicon oxide etch gas, forming the silicon oxide etch gas into a plasma, and stopping the flow of the silicon oxide etch gas.
Abstract:
Methods for removing black silicon or black silicon carbide from a plasma-exposed surface of an upper electrode of a plasma processing chamber are provided. The methods include forming a plasma using a gas composition containing a fluorine-containing gas, and removing the black silicon or black silicon carbide from the surface with the plasma. The methods can also remove black silicon or black silicon carbide from surfaces of the components in the chamber in addition to the upper electrode.
Abstract:
Methods for forming a protective polymeric coating on a silicon or silicon-carbide electrode of a plasma processing chamber are provided. The polymeric coating provides protection to the underlying surface of the electrode with respect to exposure to constituents of plasma and gaseous reactants. The methods can be performed during a process of cleaning the chamber, or during a process for etching a semiconductor substrate in the chamber.