Abstract:
A disclosed device comprises an edge bonding seal configured to be mounted to an edge bead of the electrostatic chuck. The edge bonding seal includes a monitoring layer comprised of a first material configured to either emit a species capable of being optically monitored or having an electrical resistance value capable of being monitored, or both. The edge bonding seal further includes an edge bonding layer configured to be interspersed at least between the monitoring layer and the plasma environment. The edge bonding layer is comprised of a second material susceptible to erosion due to reaction with the plasma environment and configured to expose the monitoring layer to the plasma environment upon sufficient exposure to the plasma environment.
Abstract:
PLASMA PROCESSING DEVICES WITH CORROSION RESIST ANT COMPONENTS In one embodiment, a plasma processing device may include a plasma processing chamber, a plasma region, an energy source, and a corrosion resistant component. The plasma processing chamber can be maintained at a vacuum pressure and can confine a plasma processing gas. The energy source can transmit energy into the plasma processing chamber and transform at least a portion of the plasma processing gas into plasma within the plasma region. The corrosion resistant component can be located within the plasma processing chamber. The corrosion resistant component can be exposed to the plasma processing gas and is not coincident with the plasma region. The corrosion resistant component may include an inner layer of stainless steel that is coated with an outer layer of Tantalum CTa). FIG. 1 15
Abstract:
PLASMA PROCESSING DEVICES WITH CORROSION RESISTANT COMPONENTSIn one embodiment, a plasma processing device may include a plasma processing chamber, a plasma region, an energy source, and a corrosion resistant component. The plasma processing chamber can be maintained at a vacuum pressure and can confine a plasma processing gas. The energy source can transmit energy into the plasma processing chamber and transform at least a portion of the plasma processing gas into plasma within the plasma region. The corrosion resistant component can be located within the plasma processing chamber. The corrosion resistant component can be exposed to the plasma processing gas and is not coincident with the plasma region. The corrosion resistant component may include an inner layer of stainless steel that is coated with an outer layer of Tantalum (Ta).FIG. 1