Abstract:
An aspect of the present invention provides a system and method for controlling a wafer cleaning system having a wafer carrier and a driving portion. The wafer carrier can move along a path in a first direction and a second direction. The driving portion can controllably move the wafer carrier in the first direction and the second direction. The control system includes a vibration sensor portion and a wafer carrier position controller. The vibration sensor portion can detect vibration of the wafer carrier and can output a vibration signal based on the detected vibration. The wafer carrier position controller can instruct the driving portion to modify motion of the wafer carrier based on the vibration signal to reduce the detected vibration.
Abstract:
A device for use in a wafer processing chamber having a plasma forming volume and a hot edge ring. The hot edge ring has a first surface and a second surface. The first surface is in contact with the plasma forming volume. The second surface is not in contact with the plasma forming volume. The device includes a detector operable to contact the second surface of the hot edge ring. The detector can detect a parameter of the hot edge ring and can provide a detected signal based on the detected parameter.
Abstract:
In various exemplary embodiments described herein, a system and associated method relate to non-destructive signal propagation to detect one or more defects in a substrate. The system can be built into a semiconductor process tool such as a substrate handling mechanism. The system comprises a transducer configured to convert one or more frequencies from an electrical signal into at least one mechanical pulse. The mechanical pulse is coupled to the substrate through the substrate handling mechanism. A plurality of sensors is positioned distal to the transducer and configured to be coupled, acoustically or mechanically, to the substrate. The plurality of distal sensors is further configured to detect both the mechanical pulse and any distortions to the pulse. A signal analyzer is coupled to the plurality of distal sensors to compare the detected pulse and any distortions to the pulse with a baseline response.
Abstract:
A device for use in a wafer processing chamber having a plasma forming volume and a hot edge ring. The hot edge ring has a first surface and a second surface. The first surface is in contact with the plasma forming volume. The second surface is not in contact with the plasma forming volume. The device includes a detector operable to contact the second surface of the hot edge ring. The detector can detect a parameter of the hot edge ring and can provide a detected signal based on the detected parameter.
Abstract:
In various exemplary embodiments described herein, a system and associated method relate to non-destructive signal propagation to detect one or more defects in a substrate. The system can be built into a semiconductor process tool such as a substrate handling mechanism. The system comprises a transducer configured to convert one or more frequencies from an electrical signal into at least one mechanical pulse. The mechanical pulse is coupled to the substrate through the substrate handling mechanism. A plurality of sensors is positioned distal to the transducer and configured to be coupled, acoustically or mechanically, to the substrate. The plurality of distal sensors is further configured to detect both the mechanical pulse and any distortions to the pulse. A signal analyzer is coupled to the plurality of distal sensors to compare the detected pulse and any distortions to the pulse with a baseline response.