Abstract:
To reduce the difficulties of obtaining absorbance and emission bands that reduce the effects of background noise during gel electrophoresis when irradiating with a diode laser scanning, there is provided a method of identifying strands of DNA comprising the steps of marking the strands with fluorescent labels that emit light in a region of wavelengths including at least one wavelength within the infrared and near infrared region wherein the fluorescent label includes a chromophore having the formula: or or where X is (CH2)n; n = 4-10 or X is -CH2 - CH2 - 0 - CH2 - CH2 - 0 - CH2 - CH2 -; or wherein X consists of one of O or NH, Y consists of one of NCS or H; and R consists of one of H, NCS, CH2OH, CH2NCS, COOH, irradiating the strands with light having a wavelength within one of the infrared and near infrared regions; and detecting the light emitted from the fluorescent labels. There is also provided a dye having the above formula.
Abstract:
To sequence DNA automatically, DNA marked with far infrared, near infrared, or infrared fluorescent dyes are electrophoresed in a plurality of channels through a gel electrophoresis slab or capillary tubes wherein the DNA samples are resolved in accordance with the size of DNA fragments in the gel electrophoresis slab or capillary tubes into fluorescently marked DNA bands. The separated samples are scanned photoelectrically with a laser diode and a sensor, wherein the laser scans with scanning light at a wavelength within the absorbance spectrum of said fluorescently marked DNA samples and light is sensed at the emission wavelength of the marked DNA.
Abstract:
Devices and methods are provided for the separation and dispensing of material using a microfluidic separation column connected via an exit channel to one or more sheath flow channels. The flow of separated material through the separation column is at least partially driven by a voltage potential between a first electrode within the separation column and a terminating electrode within at least one of the sheath flow channels. The separation column, exit channel, sheath flow channels, and electrodes are all within a single monolithic chip. The presence of an on-chip terminating electrode allows for separated material to be entrained in the sheath fluids and ejected onto a surface that can be non-conductive. The presence of multiple sheath flows allows for sheath flow fluids to have different compositions from one another, while reducing the occurrence of sheath flow fluids entering the separation column.
Abstract:
SPECTRORADIOMETER AND SPECTROPHOTOMETER To provide sufficient sensitivity, spectral resolution and speed of measurement for field environmental measurements in a portable spectroradiometer, a silicon photodiode receives light: (1) having a bandwidth in the range of between 2 and 15 nm (nanometers) from a pivotable concave holographic diffraction grating within the wavelength range of between 250 and 1150 nm at a scanning rate in the range of 20 to 100 nm per second; (2) having stray light of high intensity and undesired frequencies and the shorter wavelength harmonics of the selected frequency range blocked by filters; and (3) having flux of at least 10 microwatts per square meter of diffuser plate for each nanometer of bandwidth. Automatic electrical zeroing is obtained by blocking all light once at the beginning of each scan, obtaining an electrical drift-related signal and using the drift signal to adjust the measured signal during the scan. Several different sensing interfaces can be used, including a quartz, light fiber probe having at least a 50% packing density and a cone angle of at least 24 degrees. The data and the programming storage is at least 30K bytes but the instrument uses no more than two watts of power when the instrument is not scanning.
Abstract:
Devices and methods are provided for the separation and dispensing of material using a microfluidic separation column connected via an exit channel to one or more sheath flow channels. The flow of separated material through the separation column is at least partially driven by a voltage potential between a first electrode within the separation column and a terminating electrode within at least one of the sheath flow channels. The separation column, exit channel, sheath flow channels, and electrodes are all within a single monolithic chip. The presence of an on-chip terminating electrode allows for separated material to be entrained in the sheath fluids and ejected onto a surface that can be non-conductive. The presence of multiple sheath flows allows for sheath flow fluids to have different compositions from one another, while reducing the occurrence of sheath flow fluids entering the separation column.
Abstract:
To sequence DNA automatically, DNA marked with far infrared, near infrared, or infrared fluorescent dyes are electrophoresed in a plurality of channels through a gel electrophoresis slab or capillary tubes wherein the DNA samples are resolved in accordance with the size of DNA fragments in the gel electrophoresis slab or capillary tubes into fluorescently marked DNA bands. The separated samples are scanned photoelectrically with a laser diode and a sensor, wherein the laser scans with scanning light at a wavelength within the absorbance spectrum of said fluorescently marked DNA samples and light is sensed at the emission wavelength of the marked DNA.
Abstract:
An optical system is disclosed that can be used for fluorescence filtering for molecular imaging. In one preferred embodiment, a source subsystem is disclosed comprising a light source and a first set of filters designed to pass wavelengths of light in an absorption band of a fluorescent material. A detector subsystem is also disclosed comprising a light detector, imaging optics, a second set of filters designed to pass wavelengths of light in an emission band of the fluorescent material, and an aperture located at a front focal plane of the imaging optics. A telecentric space is created between the light detector and the imaging optics, such that axial rays from a plurality of field points emerge from the imaging optics parallel to each other and perpendicular to the second set of filters
Abstract:
To sequence DNA automatically, DNA marked with far infrared, near infrared, or infrared fluorescent dyes are electrophoresed in a plurality of channels through a gel electrophoresis slab or capillary tubes wherein the DNA samples are resolved in accordance with the size of DNA fragments in the gel electrophoresis slab or capillary tubes into fluorescently marked DNA bands. The separated samples are scanned photoelectrically with a laser diode and a sensor, wherein the laser scans with scanning light at a wavelength within the absorbance spectrum of said fluorescently marked DNA samples and light is sensed at the emission wavelength of the marked DNA.
Abstract:
An optical system is disclosed that can be used for fluorescence filtering for molecular imaging. In one preferred embodiment, a source subsystem is disclosed comprising a light source and a first set of filters designed to pass wavelengths of light in an absorption band of a fluorescent material. A detector subsystem is also disclosed comprising a light detector, imaging optics, a second set of filters designed to pass wavelengths of light in an emission band of the fluorescent material, and an aperture located at a front focal plane of the imaging optics. A telecentric space is created between the light detector and the imaging optics, such that axial rays from a plurality of field points emerge from the imaging optics parallel to each other and perpendicular to the second set of filters.