Abstract:
Compositions and methods to modify the surface of particles to which biomolecules are attached are disclosed. The particles can include beads and nanoparticles which are composed of metallics, metal alloys, glass, polymers and derivatives and composites thereof. The surface of the particles are modified to be hydrophilic for ease in the attachment of biomolecules to the particle surface and immobilization of the particles to a substrate to facilitate process such as nucleic acid sequencing, PCR and sequencing by ligation.
Abstract:
A method for delivering reagent during a thermal cycling reaction may include placing a delivery device containing a reagent proximate to a reaction site, initiating a first stage of the reaction, wherein the first stage includes a period of an elevated temperature, and after completing the first stage of the reaction, dispensing the reagent from the delivery device to the reaction site, wherein the dispensing includes automatically actuating the delivery device to deliver the reagent.
Abstract:
In some embodiments, an analyte detection system is provided that includes a nanochannel, an electrode arrangement, and a plurality of nanoFET devices disposed in the nanochannel. A plurality of nucleic acid base detection components can be used that include a plurality of nanopores, a plurality of nanochannels, a plurality of hybridization probes, combinations thereof, and the like. According to other embodiments of the present teachings, different coded molecules are hybridized to a target DNA molecule and used to detect the presence of various sequences along the target molecule. A kit including mixtures of coded molecules is also provided. In some embodiments, devices including nanochannels, nanopores, and the like, are used for manipulating movement of DNA molecules, for example, in preparation for a DNA sequencing detection. Nanopore structures and methods of making the same are also provided as are methods of nucleic acid sequencing using the nanopore structures. Surface-modified nanopores are provided as are methods of making them. In some embodiments, surfaced-modified nanopores for slowing the translocation of single stranded DNA (ssDNA) through the nanopore are provided, as are nanopores configured to detect each of a plurality of different bases on an ssDNA strand.
Abstract:
Microfluidic devices that incorporate a porous polymer electrode assemblies, including microfluidic device useful for detection of nucleic acids, as well as methods of using the microfluidic devices.
Abstract:
In some embodiments, an analyte detection system is provided that includes a nanochannel, an electrode arrangement, and a plurality of nanoFET devices disposed in the nanochannel. A plurality of nucleic acid base detection components can be used that include a plurality of nanopores, a plurality of nanochannels, a plurality of hybridization probes, combinations thereof, and the like. According to other embodiments of the present teachings, different coded molecules are hybridized to a target DNA molecule and used to detect the presence of various sequences along the target molecule. A kit including mixtures of coded molecules is also provided. In some embodiments, devices including nanochannels, nanopores, and the like, are used for manipulating movement of DNA molecules, for example, in preparation for a DNA sequencing detection. Nanopore structures and methods of making the same are also provided as are methods of nucleic acid sequencing using the nanopore structures. Surface-modified nanopores are provided as are methods of making them. In some embodiments, surfaced-modified nanopores for slowing the translocation of single stranded DNA (ssDNA) through the nanopore are provided, as are nanopores configured to detect each of a plurality of different bases on an ssDNA strand.