Abstract:
A method for performing polymerase chain reactions (PCR) for improving thermal non-uniformity is provided. The method includes measuring a first temperature, by a first sensor, of a first sample block sector of a sample block and measuring a second temperature, by a second sensor, of a second sample block sector of the sample block that is adjacent to the first sample block sector. The method further includes calculating, by a thermoelectric controller, a difference in temperature between the first temperature and the second temperature and adjusting, by the thermoelectric controller, the first temperature of the first sample block sector based on the difference in temperature by using one or more thermoelectric coolers. The one or more thermoelectric coolers is configured to heat or cool the first sample block sector by adjusting power output from the thermoelectric controller.
Abstract:
In one aspect, a thermal cycler system including a sample block and a thermoelectric device is disclosed. In various embodiments, the sample block has a first surface configured to receive a plurality of reaction vessels and an opposing second surface. In various embodiments the thermoelectric device is operably coupled to the second surface of the sample block. In various embodiments a thermal control unit is provided. In various embodiments the thermal control unit includes a computer processing unit. In various embodiments the thermal control unit includes an electrical current source. In various embodiments the thermal control unit also includes an electrical interface portion configured to connect the thermoelectric device with the electrical current source by way of an electrical cable. In various embodiments the thermal control unit is oriented in a different plane than the sample block and thermoelectric cooler.
Abstract:
A thermal block assembly including a sample block and two or more thermoelectric devices, is disclosed. The sample block has a top surface configured to receive a plurality of reaction vessels and an opposing bottom surface. The thermoelectric devices are operably coupled to the sample block, wherein each thermoelectric device includes a housing for a thermal sensor and a thermal control interface with a controller. Each thermoelectric device is further configured to operate independently from each other to provide a substantially uniform temperature profile throughout the sample block.
Abstract:
A thermal block assembly including a sample block and two or more thermoelectric devices, is disclosed. The sample block has a top surface configured to receive a plurality of reaction vessels and an opposing bottom surface. The thermoelectric devices are operably coupled to the sample block, wherein each thermoelectric device includes a housing for a thermal sensor and a thermal control interface with a controller. Each thermoelectric device is further configured to operate independently from each other to provide a substantially uniform temperature profile throughout the sample block.
Abstract:
In one aspect, a thermal cycler system including a sample block and a thermoelectric device is disclosed. In various embodiments, the sample block has a first surface configured to receive a plurality of reaction vessels and an opposing second surface. In various embodiments the thermoelectric device is operably coupled to the second surface of the sample block. In various embodiments a thermal control unit is provided. In various embodiments the thermal control unit includes a computer processing unit. In various embodiments the thermal control unit includes an electrical current source. In various embodiments the thermal control unit also includes an electrical interface portion configured to connect the thermoelectric device with the electrical current source by way of an electrical cable. In various embodiments the thermal control unit is oriented in a different plane than the sample block and thermoelectric cooler.
Abstract:
A method for performing polymerase chain reactions (PCR) for improving thermal non-uniformity is provided. The method includes measuring a first temperature, by a first sensor, of a first sample block sector of a sample block and measuring a second temperature, by a second sensor, of a second sample block sector of the sample block that is adjacent to the first sample block sector. The method further includes calculating, by a thermoelectric controller, a difference in temperature between the first temperature and the second temperature and adjusting, by the thermoelectric controller, the first temperature of the first sample block sector based on the difference in temperature by using one or more thermoelectric coolers. The one or more thermoelectric coolers is configured to heat or cool the first sample block sector by adjusting power output from the thermoelectric controller.
Abstract:
In one aspect, a thermal cycler system including a sample block and a thermoelectric device is disclosed. In various embodiments, the sample block has a first surface configured to receive a plurality of reaction vessels and an opposing second surface. In various embodiments the thermoelectric device is operably coupled to the second surface of the sample block. In various embodiments a thermal control unit is provided. In various embodiments the thermal control unit includes a computer processing unit. In various embodiments the thermal control unit includes an electrical current source. In various embodiments the thermal control unit also includes an electrical interface portion configured to connect the thermoelectric device with the electrical current source by way of an electrical cable. In various embodiments the thermal control unit is oriented in a different plane than the sample block and thermoelectric cooler.