Abstract:
In one embodiment, a chemical sensor is described. The chemical sensor includes a chemically-sensitive field effect transistor including a floating gate conductor having an upper surface. A material defines an opening extending to the upper surface of the floating gate conductor. The material comprises a first dielectric underlying a second dielectric. A conductive element contacts the upper surface of the floating gate conductor and extends a distance along a sidewall of the opening, the distance defined by a thickness of the first dielectric.
Abstract:
A method of fabricating a microwell in an array structure is disclosed herein. The array structure includes a plurality of field effect transistors (FETs), where each FET has a gate structure. The method includes disposing a titanium nitride (TiN) layer on at least one conductive layer coupled to the gate structure of at least one FET. A insulation layer is disposed on the array structure, where the insulation layer lies above the TiN layer. Further, an opening above the gate structure of the at least one FET is etched to remove the insulation layer above the gate structure and to expose the TiN layer. A microwell with at least one sidewall formed from the insulation layer and with a bottom surface formed from the TiN layer is a result of the etching process. The gate structure is specified as a floating gate structure and the FET is an ISFET.
Abstract:
The device includes a material defining a reaction region. The device includes a plurality of chemically-sensitive field effect transistors (chemFET) each having a common floating gate (370) in communication with the reaction region. The device also includes a circuit to obtain respective output signals from the chemically- sensitive field effect transistors indicating an analyte within the reaction region.
Abstract:
A device including a transparent layer defining a surface exposed to a flow volume and to secure a target polynucleotide template and a detector structure secured to the transparent layer and including a plurality of detectors to detect a signal emitted during nucleotide incorporation along the target polynucleotide template.
Abstract:
The device includes a material defining a reaction region. The device includes a plurality of chemically-sensitive field effect transistors (chemFET) each having a common floating gate (370) in communication with the reaction region. The device also includes a circuit to obtain respective output signals from the chemically- sensitive field effect transistors indicating an analyte within the reaction region.
Abstract:
In one embodiment, a chemical sensor is described. The chemical sensor includes a chemically-sensitive field effect transistor including a floating gate conductor having an upper surface. A material defines an opening extending to the upper surface of the floating gate conductor, the material comprising a first dielectric underlying a second dielectric. A conductive element contacts the upper surface of the floating gate conductor and extending a distance along a sidewall of the opening.
Abstract:
In one implementation, a chemical device is described. The sensor includes a chemically-sensitive field effect transistor including a floating gate structure having a plurality of floating gate conductors electrically coupled to one another. A conductive element overlies and is in communication with an uppermost floating gate conductor in the plurality of floating gate conductors. The conductive element is wider and thinner than the uppermost floating gate conductor. A dielectric material defines an opening extending to an upper surface of the conductive element.
Abstract:
A method of fabricating a microwell in an array structure is disclosed herein. The array structure can include a plurality of field effect transistors (FETs), where each FET has a gate structure. The method can include disposing a titanium nitride (TiN) layer on at least one conductive layer coupled to the gate structure of at least one FET. A insulation layer can also be disposed on the array structure, where the insulation layer lies above the TiN layer. Further, an opening above the gate structure of the at least one FET can be etched to remove the insulation layer above the gate structure and to expose the TiN layer. A microwell with at least one sidewall formed from the insulation layer and with a bottom surface formed from the TiN layer is a result of the etching process.
Abstract:
In one implementation, a chemical device is described. The sensor includes a chemically-sensitive field effect transistor including a floating gate structure having a plurality of floating gate conductors electrically coupled to one another. A conductive element overlies and is in communication with an uppermost floating gate conductor in the plurality of floating gate conductors. The conductive element is wider and thinner than the uppermost floating gate conductor. A dielectric material defines an opening extending to an upper surface of the conductive element.
Abstract:
In one embodiment, a chemical sensor is described. The chemical sensor includes a chemically-sensitive field effect transistor including a floating gate conductor having an upper surface. A material defines an opening extending to the upper surface of the floating gate conductor. The material comprises a first dielectric underlying a second dielectric. A conductive element contacts the upper surface of the floating gate conductor and extends a distance along a sidewall of the opening, the distance defined by a thickness of the first dielectric.