Abstract:
The invention reflects discovery of a liquid phase doping technique that, unlike previous techniques, exhibits very little fluorine depletion upon subsequent heating. The invention involves the steps of providing a silica sol comprising a tetraalkylammonium hydroxide and a di-, tri-, or tetra-alkylammonium fluoride, the sol having pH of about 10 to about 14, adding a gelling agent to the sol to induce gelation, casting or extruding the sol to form a gel body, and then drying, heat treating, and sintering the body. Advantageously, the fluorine-containing compound is tetramethylammonium fluoride.
Abstract:
A sol-gel process for fabricating bulk, germanium-doped silica bodies useful for a variety of applications, including core rods, substrate tubes, immediate overcladding, pumped fiber lasers, and planar waveguides, is provided. The process involves the steps of providing a dispersion of silica particles in an aqueous quaternary ammonium germanate solution - typically tetramethylammonium germanate, gelling the dispersion to provide a gel body, and drying, heat treating, and sintering the body to provide the germanium-doped silica glass. A process for fabricating germanium dioxide is also described.
Abstract:
A silica sol-gel fabrication process is provided which allows improved control of the shrinkage that takes place during the drying of a gel body. In particular, the invention makes it possible to attain extremely low shrinkage through the completion of the drying stage, e.g., below 1% linear shrinkage, in relatively large sol-gel bodies of (dry weight) 1 kg or more, typically 10 kg or more, or even 40 kg or more, compared to the much higher shrinkages typically encountered. Specifically, use of a particular polymeric additive makes it possible for a gel body to experience linear shrinkage at least 55% less than an identical process without the polymeric additive.