Abstract:
시간주기동안측정된복합파형의평균값이먼저복합파형을전압으로변환함으로써이어서이 전압을전류로변환하고, 이전류를사용하여커패시터를충전함으로써결정될수 있다. 측정시간주기의끝에서, 커패시터상의전압전하(샘플전압)는아날로그-디지털변환기(ADC)와관련된샘플-홀드회로에의해샘플링될수 있다. 이어서샘플커패시터상의전압전하는, 예를들면, 커패시터플레이트들이복합파형샘플측정사이클의다음번평균을대비하여덤프스위치에의해쇼트됨으로써, 제거될수 있다. 그리고나서 ADC는이 샘플된전압전하를그의디지털표현으로변환하고, 복합파형의실제평균값이결정, 예를들면, 측정시간주기와조합하여그로부터계산될수 있다.
Abstract:
Eine Vorrichtung beinhaltet einen Kondensator, eine Referenzspannung, ein zu messendes Eingangssignal und eine Frequenzberechnungsschaltung. Die Frequenzberechnungsschaltung ist ausgebildet, um einen Kapazitätswert für den Kondensator auszuwählen, den Kondensator mit der Referenzspannung zu laden, den Kondensator auf eine Schwellenspannung zu entladen und basierend auf einem Vergleich der Zeit, um den Kondensator mit einem Taktzyklus des Eingangssignals auf die Schwellenspannung zu entladen, eine Frequenz des Eingangssignals zu bestimmen.
Abstract:
Un microcontrolador que comprende una base de tiempos (100) programable, comprendiendo la base de tiempos (100) una indicación de activación para poner en marcha un temporizador o primer contador (110) de la base de tiempos (100) para generar una o más señales de eventos periódicos; caracterizado porque la base de tiempos (100) es programable para operar en uno de al menos tres modos, configurándose la base de tiempos (100) tras recibir una señal (125) de activación: en el primer modo para generar una pluralidad de señales de eventos periódicos de temporizador/contador por medio de dicho temporizador o primer contador (110) hasta que se establece un bit de reinicialización en un registro de control, en el segundo modo para generar una única señal de un evento de temporizador/contador por medio de dicho temporizador o primer contador (110), y en el tercer modo para generar un número predefinido de señales de eventos de temporizador/contador por medio de dicho temporizador o primer contador (110), estando definido el número predefinido por una pluralidad de bits de un registro (CCPxCON3) y estando controlado por un segundo contador (180) asociado.
Abstract:
Eine Konstantstromquelle, eine stabile Zeitbasis und ein Kondensator werden verwendet, um einen Selbsttest des Betriebs eines Analog-Digital-Wandlers (ADC) durchzuführen, indem der Kondensator für eine vorgegebene Zeitdauer aufgeladen wird, um eine Spannung darauf zu erzeugen. Diese Spannung ist proportional zur Zeitdauer, in der der Kondensator geladen wurde. Mehrere Punkte der ADC-Übertragungsfunktion können in diesem Selbsttestverfahren durch Variieren der Zeit zum Laden des Kondensators einfach überprüft werden. Die relative Genauigkeit zwischen den Testpunkten kann dann leicht erreicht werden. Absolute Genauigkeit kann erreicht werden, indem eine genaue Taktreferenz für die Zeitbasis, eine bekannte Stromquelle und ein bekannter Kondensatorwert verwendet werden.
Abstract:
A microcontroller has a programmable timebase (100), wherein the timebase has a trigger input to start a timer or counter (110) of the timebase and wherein the timebase can be configured to operate upon receiving a trigger signal in a first mode to generate a plurality of timer/counter event signals (190) until a reset bit in a control register is set and in a second mode to generate a single timer/ counter event signal and wherein the timebase can be configured to operate in a third mode to generate a predefined number of timer/ counter event signals, wherein the predefined number is defined by a plurality of bits of a register (180).
Abstract:
Temperature is determined by measuring the time it takes to charge a capacitor with a resistive temperature sensor. A clock, time counter, a voltage comparator and voltage reference are used in determining a course time measurement. The time measurement resolution is enhanced with the addition of a constant current source charging another timing capacitor within a single clock pulse time to provide a fine time measurement.
Abstract:
A time period of an event is determined by charging a known value capacitor from a constant current source during the event. The resultant voltage on the capacitor is proportional to the event time period and may be calculated from the resultant voltage and known capacitance value. Capacitance is measured by charging a capacitor from a constant current source during a known time period. The resultant voltage on the capacitor is proportional to the capacitance thereof and may be calculated from the resultant voltage and known time period. A long time period event may be measured by charging a first capacitor at the start of the event and a second capacitor at the end of the event, while counting clock times therebetween. Delay of an event is done by charging voltages on first and second capacitors at beginning and end of event, while comparing voltages thereon with a reference voltage.
Abstract:
A time period of an event is determined by charging a known value capacitor from a constant current source during the event. The resultant voltage on the capacitor is proportional to the event time period and may be calculated from the resultant voltage and known capacitance value. Capacitance is measured by charging a capacitor from a constant current source during a known time period. The resultant voltage on the capacitor is proportional to the capacitance thereof and may be calculated from the resultant voltage and known time period. A long time period event may be measured by charging a first capacitor at the start of the event and a second capacitor at the end of the event, while counting clock times therebetween. Delay of an event is done by charging voltages on first and second capacitors at beginning and end of event, while comparing voltages thereon with a reference voltage.
Abstract:
A liquid crystal display (LCD) bias generator generates a plurality of bias voltages, e.g., four bias voltages, needed to drive a segmented LCD. The LCD bias generator has a voltage generator, e.g., charge pump, that may generate a most positive voltage, e.g., substantially equal to or more positive than VDD, on the integrated circuit that may also be used for maintaining proper reverse bias operation of well ties and analog switches of the integrated circuit. Other necessary LCD bias voltages, e.g., three voltages, may also be derived from the LCD bias generator to provide bias and contrast control voltages required by the LCD. Having a more positive bias voltage than the power supply voltage, VDD, allows VDD to cover a wider range of voltages, e.g., powered from a battery, by eliminating the need for complex analog switch and pad designs for the integrated circuit.
Abstract:
A method of filtering one or more input signals, includes receiving one or more input signals, each having an input signal value. The method includes storing at least two instructions in a program memory to filter one or more of the input signals. Each instruction includes an opcode and identifies at least two input locations and at least one output location. The method includes, for one or more of the one or more input signals, and then for each instruction, fetching input values from the at least two input locations. The method further includes performing an operation on the input values to produce an output value, based on the opcode of the instruction and outputting the output value to at least one output location.