Abstract:
The present invention relates generally to the field of micro-scale or millimeter scale devices and to the use of multi-layer multi-material electrochemical fabrication methods for producing such devices with particular embodiments relate to shredding devices and more particularly to shredding devices for use in medical applications. In some embodiments, tissue removal devices are used in procedures to removal spinal tissue and in other embodiments, similar devices are used to remove thrombus from blood vessel.
Abstract:
Embodiments are directed to the formation micro-scale or millimeter scale structures or method of making such structures wherein the structures are formed from at least one sheet structural material and may include additional sheet structural materials or deposited structural materials wherein all or a portion of the patterning of the structural materials occurs via laser cutting. In some embodiments, selective deposition is used to provide a portion of the patterning. In some embodiments the structural material or structural materials are bounded from below by a sacrificial bridging material (e.g. a metal) and possibly from above by a sacrificial capping material (e.g. a metal).
Abstract:
Numerous electrochemical fabrication methods and apparatus are provided for producing multi-layer structures (e.g. having meso-scale or micro-scale features) from a plurality of layers of deposited materials using adhered masks (e.g. formed from liquid photoresist or dry film), where two or more materials may be provided per layer where at least one of the materials is a structural material and one or more of any other materials may be a sacrificial material which will be removed after formation of the structure. Materials may comprise conductive materials that are electrodeposited or deposited in an electroless manner. In some embodiments special care is undertaken to ensure alignment between patterns formed on successive layers.
Abstract:
Embodiments of invention are directed to the formation of microprobes (i.e. compliant electrical or electronic contact elements) on a temporary substrate (306), dicing individual probe arrays (300), and then transferring the arrays to space transformers or other permanent substrates (310). Some embodiments of the invention transfer probes (302) to permanent substrates (310) prior to separating the probes (302) from a temporary substrate (306) on which the probes (302) were formed while other embodiments do the opposite. Some embodiments, remove sacrificial material (308) prior to transfer while other embodiments remove sacrificial material (308) after transfer. Some embodiments are directed to the bonding of first and second electric components together using one or more solder bumps with enhanced aspect ratios (i.e. height to width ratios) obtained as a result of surrounding the bumps at least in part with rings of a retention material. The retention material may act be a solder mask material.
Abstract:
Electrochemical fabrication methods for forming single and multilayer mesoscale and microscale structures are disclosed which include the use of diamond machining (e.g. fly cutting or turning) to planarize layers. Some embodiments focus on systems of sacrificial and structural materials which are useful in Electrochemical fabrication and which can be diamond machined with minimal tool wear (e.g. Ni-P and Cu, Au and Cu, Cu and Sn, Au and Cu, Au and Sn, and Au and Sn-Pb), where the first material or materials are the structural materials and the second is the sacrificial material). Some embodiments focus on methods for reducing tool wear when using diamond machining to planarize structures being electrochemically fabricated using difficult-to-machine materials (e.g. by depositing difficult to machine material selectively and potentially with little excess plating thickness, and/or pre-machining depositions to within a small increment of desired surface level (e.g. using lapping or a rough cutting operation) and then using diamond fly cutting to complete the process, and/or forming structures or portions of structures from thin walled regions of hard-to-machine materials as opposed to wide solid regions of structural material.
Abstract:
The present invention relates generally to the field of micro-scale or millimeter scale devices and to the use of multi-layer multi-material electrochemical fabrication methods for producing such devices with particular embodiments relate to shredding devices and more particularly to shredding devices for use in medical applications. In some embodiments, tissue removal devices are used in procedures to removal spinal tissue and in other embodiments, similar devices are used to remove thrombus from blood vessel.
Abstract:
Some embodiments of the present invention are directed to techniques for building up single layer or multi-layer structures (222) on dielectric or partially dielectric substrates (202). Certain embodiments deposit seed layer material (206) directly onto substrate materials while other embodiments use an intervening adhesion layer material (324). Some embodiments use different seed layer materials and/or adhesion layer materials for sacrificial (212) and structural (216) conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while other embodiments apply the materials in blanket fashion. Some embodiments remove extraneous depositions (e.g. depositions to regions unintended to form part of a layer) via planarization operations while other embodiments remove the extraneous material via etching operations. Other embodiments are directed to the electrochemical fabrication of multilayer mesoscale or microscale structures which are formed using at least one conductive structural material (702), at least one conductive sacrificial material (706), and at least one dielectric material (704). In some embodiments the dielectric material is a UV-curable photopolymer.
Abstract:
The present invention relates generally to the field of micro-scale or millimeter scale devices and to the use of multi-layer multi-material electrochemical fabrication methods for producing such devices with particular embodiments relate to shredding devices and more particularly to shredding devices for use in medical applications. In some embodiments, tissue removal devices are used in procedures to removal spinal tissue and in other embodiments, similar devices are used to remove thrombus from blood vessel.