Abstract:
A field emission device and method of forming a field emission device are provided in accordance with the present invention. The field emission device is comprised of a substrate ( 12 ) having a deformation temperature that is less than about six hundred and fifty degrees Celsius and a nano-supported catalyst ( 22 ) formed on the substrate ( 12 ) that has active catalytic particles that are less than about five hundred nanometers. The field emission device is also comprised of a nanotube ( 24 ) that is catalytically formed in situ on the nano-supported catalyst ( 22 ), which has a diameter that is less than about twenty nanometers.
Abstract:
A field emission source comprising a first conductive region, a layer of nanotubes deposited on the first conductive region, and a second conductive region placed over and spaced from the nanotube coated first conductive region. After the device structure is fabricated, a laser beam is used to dislodge one end of the nanotube from the first conductive surface and an electric field is simultaneously applied to point the freed end of the nanotube at the second conductive region.
Abstract:
A field emission source (5) comprising a first conductive region (20), a layer of nanotubes (30) deposited on the first conductive region, and a second conductive region (50) placed over and spaced from the nanotube coated first conductive region. After the device structure is fabricated, a laser (70) beam is used to dislodge one end of the nanotube from the first conductive surface and an electric field is simultaneously applied to point the freed end of the nanotube at the second conductive region.
Abstract:
A field emission device and method of forming a field emission device are provided in accordance with the present invention. The field emission device is comprised of a substrate (12) having a deformation temperature that is less than about six hundred and fifty degrees Celsius and a nano-supported catalyst (22) formed on the substrate (12) that has active catalytic particles that are less than about five hundred nanometers. The field emission device is also comprised of a nanotube (24) that is catalytically formed in situ on the nano-supported catalyst (22), which has a diameter that is less than about twenty nanometers.