Abstract:
A mesoscale microelectromechanical system (MEMS) package for a micro-machine. The mesoscale micro-machine is formed on a printed circuit board (10) at the same time and of the same materials as the mesoscale micro-machine package. Both the micro-machine and the package have a first metal layer (12, 16), an insulating member (22, 26) formed on the first metal layer, and a second metal layer (32, 36) situated on the insulating layer. The package consists of a perimeter wall surrounding the micro-machine and a low-flow capping adhesive layer (40). The first metal layers of both the micro-machine and the package are formed in the same process sequence, and the insulating layers of both the micro-machine and the package are formed in the same process sequence, and the second metal layers of both the micro-machine and the package are formed in the same process sequence. The low-flow capping adhesive secures an optional cover (46) on the package to provide an environmental seal.
Abstract:
A mesoscale microelectromechanical system (MEMS) package for a micro-machine. The mesoscale micro-machine is formed on a printed circuit board (10) at the same time and of the same materials as the mesoscale micro-machine package. Both the micro-machine and the package have a first metal layer (12, 16), an insulating member (22, 26) formed on the first metal layer, and a second metal layer (32, 36) situated on the insulating layer. The package consists of a perimeter wall surrounding the micro-machine and a low-flow capping adhesive layer (40). The first metal layers of both the micro-machine and the package are formed in the same process sequence, and the insulating layers of both the micro-machine and the package are formed in the same process sequence, and the second metal layers of both the micro-machine and the package are formed in the same process sequence. The low-flow capping adhesive secures an optional cover (46) on the package to provide an environmental seal.
Abstract:
A flexible circuit board and a method for making a flexible circuit board. The flexible circuit board (10) is formed from a substantially rigid material and includes a first portion (12) and a second portion (14) coupled by a bend region (16). The bend region (16) includes at least one bend (40, 52) having a radius less than 120 mils.
Abstract:
A method for providing an underfill material on an integrated circuit chip at the wafer level. The wafer (10) typically contains one or more integrated circuit chips (12), and each integrated circuit chip typically has a plurality of solder bumps (34) on its active surface. The wafer is first diced (22) on the active surface side to form channels (38) that will ultimately define the edges (39) of each individual integrated circuit chip, the dicing being of such a depth that it only cuts part-way through the wafer. The front side (36) of the wafer is then coated (24) with an underfill material (40). Generally, a portion (45) of each solder bump remains uncoated, but in certain cases the bumps can be completely covered. The back side of the wafer is then lapped, ground, polished or otherwise treated (26) so as to remove material down to the level of the previously diced channels. This reduction in the thickness of the wafer causes the original diced channels to now extend completely from the front side to the back side of the wafer. The wafer is then singulated (28) by cutting the underfill material (92) that was deposited in the channels during the coating step, so that the integrated circuit chip (12) is released from the wafer, and the underfill material that was coated on the active side remains affixed to the active surface of each individual integrated circuit chip.
Abstract:
A mesoscale microelectromechanical system (MEMS) package for a micro-machine. The mesoscale micro-machine is formed on a printed circuit board (10) at the same time and of the same materials as the mesoscale micro-machine package. Both the micro-machine and the package have a first metal layer (12, 16), an insulating member (22, 26) formed on the first metal layer, and a second metal layer (32, 36) situated on the insulating layer. The package consists of a perimeter wall surrounding the micro-machine and a low-flow capping adhesive layer (40). The first metal layers of both the micro-machine and the package are formed in the same process sequence, and the insulating layers of both the micro-machine and the package are formed in the same process sequence, and the second metal layers of both the micro-machine and the package are formed in the same process sequence. The low-flow capping adhesive secures an optional cover (46) on the package to provide an environmental seal.
Abstract:
A mesoscale microelectromechanical system (MEMS) package for a micro-machine. The mesoscale micro-machine is formed on a printed circuit board (10) at the same time and of the same materials as the mesoscale micro-machine package. Both the micro-machine and the package have a first metal layer (12, 16), an insulating member (22, 26) formed on the first metal layer, and a second metal layer (32, 36) situated on the insulating layer. The package consists of a perimeter wall surrounding the micro-machine and a low-flow capping adhesive layer (40). The first metal layers of both the micro-machine and the package are formed in the same process sequence, and the insulating layers of both the micro-machine and the package are formed in the same process sequence, and the second metal layers of both the micro-machine and the package are formed in the same process sequence. The low-flow capping adhesive secures an optional cover (46) on the package to provide an environmental seal.