Pulsed battery charger circuit
    1.
    发明专利

    公开(公告)号:SG43164A1

    公开(公告)日:1997-10-17

    申请号:SG1996004692

    申请日:1994-12-01

    Applicant: MOTOROLA INC

    Abstract: A pulsed battery charger circuit (11) for charging a battery (28). A control circuit (17) is responsive to a sense circuit (16) that monitors the battery voltage. The control circuit (17) pulses a first current source (25) or a second current source (20). An amplifier (14) is responsive to the first (25) and second (20) current sources for generating first and second predetermined voltages between a drive output (12) and a sense input (13). The first current source (25) is pulsed when the sense circuit (16) senses the battery voltage to be less than a first threshold voltage. The second current source (20) is pulsed when the sense circuit (16) senses the battery voltage to be greater than the first threshold voltage. Both the first (25) and second (20) current sources are disabled when the sense circuit (16) senses the battery voltage to be greater than a second threshold voltage.

    Temperature-coefficient controlled radio frequency signal detecting circuitry

    公开(公告)号:AU667261B2

    公开(公告)日:1996-03-14

    申请号:AU5913394

    申请日:1994-03-29

    Applicant: MOTOROLA INC

    Abstract: A TC controlled RF signal detecting circuitry (211) used in the output power control circuit of a TDMA RF signal power amplifier includes positive coefficient current source (303) producing current I+ having a positive TC, negative coefficient current source (305) producing current I- having a negative TC, and current mirror (301) for summing currents I+ and I- to produce substantially identical compensated mirror currents Im1 and Im2. Anti-clamping current mirror (309) mirrors current Im2 to produce compensated currents Ia1 and Ia2, which are applied to and bias a Schottky diode coupled in series to a resistor network in each leg of diode detector (311). Each leg of diode detector (311) has a positive TC, which is substantially offset by the negative TC of compensated currents Ia1 and Ia2. Schottky diode (431) in one leg of diode detector (311) half-wave rectifies RF feedback signal (212) to produce temperature and voltage compensated power level signal (229), which has a DC level proportional to the output power level of RF output signal (214). By using TC controlled RF signal detecting circuitry (211), power level signal (229) has a DC level which is stable to within 5 mV over temperature ranging from -55 DEG C. to +125 DEG C. and over power supply voltage ranging from 2.7 V to 4.75 V.

    3.
    发明专利
    未知

    公开(公告)号:DE69839115D1

    公开(公告)日:2008-03-27

    申请号:DE69839115

    申请日:1998-03-26

    Applicant: MOTOROLA INC

    Abstract: A battery protection system (20) controls a process for charging a battery pack (15). A hysteresis comparator (54) senses a charging current flowing through the battery pack (15) and switches off a charging switch (31) to interrupt the charging current when the charging current reaches an upper limit. A transient current is then generated by an inductor (34). The hysteresis comparator (54) senses the transient current flowing through the battery pack (15) and switches on the charging switch (31) to regenerate the charging current when the transient current decreases substantially to zero. Periodically, a battery monitoring circuit (40) switches off the charging switch (31) and measures an open circuit voltage across each battery cell in the battery pack (15). In response to the open circuit voltage of a battery cell reaching a fully charged voltage, the battery monitoring circuit (40) switches off the charging switch (31) to terminate the charging process.

    4.
    发明专利
    未知

    公开(公告)号:DE4411733C2

    公开(公告)日:2001-08-02

    申请号:DE4411733

    申请日:1994-04-05

    Applicant: MOTOROLA INC

    Abstract: A TC controlled RF signal detecting circuitry (211) used in the output power control circuit of a TDMA RF signal power amplifier includes positive coefficient current source (303) producing current I+ having a positive TC, negative coefficient current source (305) producing current I- having a negative TC, and current mirror (301) for summing currents I+ and I- to produce substantially identical compensated mirror currents Im1 and Im2. Anti-clamping current mirror (309) mirrors current Im2 to produce compensated currents Ia1 and Ia2, which are applied to and bias a Schottky diode coupled in series to a resistor network in each leg of diode detector (311). Each leg of diode detector (311) has a positive TC, which is substantially offset by the negative TC of compensated currents Ia1 and Ia2. Schottky diode (431) in one leg of diode detector (311) half-wave rectifies RF feedback signal (212) to produce temperature and voltage compensated power level signal (229), which has a DC level proportional to the output power level of RF output signal (214). By using TC controlled RF signal detecting circuitry (211), power level signal (229) has a DC level which is stable to within 5 mV over temperature ranging from -55 DEG C. to +125 DEG C. and over power supply voltage ranging from 2.7 V to 4.75 V.

    5.
    发明专利
    未知

    公开(公告)号:DE4411733A1

    公开(公告)日:1994-11-03

    申请号:DE4411733

    申请日:1994-04-05

    Applicant: MOTOROLA INC

    Abstract: A TC controlled RF signal detecting circuitry (211) used in the output power control circuit of a TDMA RF signal power amplifier includes positive coefficient current source (303) producing current I+ having a positive TC, negative coefficient current source (305) producing current I- having a negative TC, and current mirror (301) for summing currents I+ and I- to produce substantially identical compensated mirror currents Im1 and Im2. Anti-clamping current mirror (309) mirrors current Im2 to produce compensated currents Ia1 and Ia2, which are applied to and bias a Schottky diode coupled in series to a resistor network in each leg of diode detector (311). Each leg of diode detector (311) has a positive TC, which is substantially offset by the negative TC of compensated currents Ia1 and Ia2. Schottky diode (431) in one leg of diode detector (311) half-wave rectifies RF feedback signal (212) to produce temperature and voltage compensated power level signal (229), which has a DC level proportional to the output power level of RF output signal (214). By using TC controlled RF signal detecting circuitry (211), power level signal (229) has a DC level which is stable to within 5 mV over temperature ranging from -55 DEG C. to +125 DEG C. and over power supply voltage ranging from 2.7 V to 4.75 V.

    6.
    发明专利
    未知

    公开(公告)号:FR2703860A1

    公开(公告)日:1994-10-14

    申请号:FR9403657

    申请日:1994-03-29

    Applicant: MOTOROLA INC

    Abstract: A TC controlled RF signal detecting circuitry (211) used in the output power control circuit of a TDMA RF signal power amplifier includes positive coefficient current source (303) producing current I+ having a positive TC, negative coefficient current source (305) producing current I- having a negative TC, and current mirror (301) for summing currents I+ and I- to produce substantially identical compensated mirror currents Im1 and Im2. Anti-clamping current mirror (309) mirrors current Im2 to produce compensated currents Ia1 and Ia2, which are applied to and bias a Schottky diode coupled in series to a resistor network in each leg of diode detector (311). Each leg of diode detector (311) has a positive TC, which is substantially offset by the negative TC of compensated currents Ia1 and Ia2. Schottky diode (431) in one leg of diode detector (311) half-wave rectifies RF feedback signal (212) to produce temperature and voltage compensated power level signal (229), which has a DC level proportional to the output power level of RF output signal (214). By using TC controlled RF signal detecting circuitry (211), power level signal (229) has a DC level which is stable to within 5 mV over temperature ranging from -55 DEG C. to +125 DEG C. and over power supply voltage ranging from 2.7 V to 4.75 V.

    BATTERY PROTECTION SYSTEM
    7.
    发明申请
    BATTERY PROTECTION SYSTEM 审中-公开
    电池保护系统

    公开(公告)号:WO9845924A3

    公开(公告)日:1998-12-23

    申请号:PCT/US9805968

    申请日:1998-03-26

    Applicant: MOTOROLA INC

    CPC classification number: H02J7/0026 H02J7/0011 H02J7/0021 H02J7/0093

    Abstract: A battery protection system (20) controls a process for charging a battery pack (15). A hysteresis comparator (54) senses a charging current flowing through the battery pack (15) and switches off a charging switch (31) to interrupt the charging current when the charging current reaches an upper limit. A transient current is then generated by an inductor (34). The hysteresis comparator (54) senses the transient current flowing through the battery pack (15) and switches on the charging switch (31) to regenerate the charging current when the transient current decreases substantially to zero. Periodically, a battery monitoring circuit (40) switches off the charging switch (31) and measures an open circuit voltage across each battery cell in the battery pack (15). In response to the open circuit voltage of a battery cell reaching a fully charged voltage, the battery monitoring circuit (40) switches off the charging switch (31) to terminate the charging process.

    Temperature-Coefficient Controlled Radio Frequency Signal Detecting Circuitry

    公开(公告)号:CA2120095A1

    公开(公告)日:1994-10-06

    申请号:CA2120095

    申请日:1994-03-28

    Applicant: MOTOROLA INC

    Abstract: A TC controlled RF signal detecting circuitry (211) used in the output power control circuit of a TDMA RF signal power amplifier includes positive coefficient current source (303) producing current I+ having a positive TC, negative coefficient current source (305) producing current I- having a negative TC, and current mirror (301) for summing currents I+ and I- to produce substantially identical compensated mirror currents Im1 and Im2. Anti-clamping current mirror (309) mirrors current Im2 to produce compensated currents Ia1 and Ia2, which are applied to and bias a Schottky diode coupled in series to a resistor network in each leg of diode detector (311). Each leg of diode detector (311) has a positive TC, which is substantially offset by the negative TC of compensated currents Ia1 and Ia2. Schottky diode (431) in one leg of diode detector (311) half-wave rectifies RF feedback signal (212) to produce temperature and voltage compensated power level signal (229), which has a DC level proportional to the output power level of RF output signal (214). By using TC controlled RF signal detecting circuitry (211), power level signal (229) has a DC level which is stable to within 5 mV over temperature ranging from -55 DEG C. to +125 DEG C. and over power supply voltage ranging from 2.7 V to 4.75 V.

Patent Agency Ranking