Abstract:
An optical element for terahertz waves that transmits terahertz-wave incident beams through itself after being compressed into half or less a wavelength of the beam, the optical element comprising: a substrate that allows terahertz waves to be transmitted through itself; and a conductive coat that covers a surface of the substrate and is capable of blocking the waves, wherein the coat has an aperture provided in a circular region and ring-shaped grooves, provided on a surface of the coat, having the same center as the circular region and having radii which increase every fixed length, and wherein in the circular region, four or more fan-shaped tips each having an arc with the same radius of curvature as the radius of the region, are arranged at equal distances toward the center of the circle without contacting each other as the arc contacts an outer periphery of the region.
Abstract:
One purpose of the invention is to provide a phosphor with excellent quantum efficiency, a method for manufacturing the same, and a light-emitting device that uses this phosphor. One embodiment provides a phosphor comprising monocrystals with YAG crystals as a matrix, the quantum efficiency of the phosphor at 25°C being 92% or higher at an excitation light wavelength of 460 nm.
Abstract:
[Problem] To provide a light-emitting device which does not undergo the deterioration in luminous efficiency associated with the long-term use. [Solution] A light-emitting device (1) comprises a light-emitting element (10) which can emit blue light and a phosphor (2) which is composed of a single kind of single crystal and can emit yellow light upon the irradiation with the light emitted from the light-emitting element (10) which serves as excitation light. Thus, it becomes possible to prevent the deterioration in luminous efficiency associated with the deterioration in a binder or the like compared with a light-emitting device which utilizes multiple kinds of granular phosphors, because any binder for binding phosphors to each other is not required in the light-emitting device (1).
Abstract:
The present invention provides a cermet coating that can take advantage of the hardness of a powder for a hard reinforcement phase more effectively, and spraying particles for forming the cermet coating. The cermet coating is formed on a base surface and has a hard reinforcement phase and a binder phase. The cermet coating has a Vickers hardness of from 50% to less than 100% of the hardness of the powder for a hard reinforcement phase, and has a surface roughness (center-line average roughness Ra) of less than 3.0. The cermet coating is formed by heating spraying particles prepared as aggregates of a powder for a hard reinforcement phase and a powder for a binder phase, and applying the spraying particles to a base at a supersonic velocity to integrate the powder for a hard reinforcement phase with the powder for a binder phase.