System and method for high-throughput test of mechanical properties of miniature specimens

    公开(公告)号:US11193867B2

    公开(公告)日:2021-12-07

    申请号:US16835899

    申请日:2020-03-31

    Abstract: The present invention relates to a test system and method capable of simultaneously carrying out a high-throughput test of mechanical properties for miniature specimens. The system comprises one workstation (17) and a plurality of specimen test modules (16) installed horizontally or vertically on a workbench (15), wherein the workstation (17) comprises an operation interface, a data processing unit and a load output unit; each specimen test module (16) comprises a drive unit (5), an interchangeable clamp unit (8), a displacement sensor (2), and a load sensor (14); the workstation (17) controls the drive unit (5) of the specimen test module (16) and receives detection data of the displacement sensor (2) and the load sensor (14); each specimen test module (16) optionally performs mechanical property testing independently; and the workstation (17) controls simultaneously started testing of a plurality of specimens (9). The present invention can achieve tensile, bending, compression bending, stress-rupture, relaxation, and fatigue strength tests on a plurality of specimens at the same time.

    Integrated Research and Development System for High-throughput Preparation and Statistical Mapping Characterization of Materials

    公开(公告)号:US20230205175A1

    公开(公告)日:2023-06-29

    申请号:US18116279

    申请日:2023-03-01

    CPC classification number: G05B19/4099 G05B2219/49023

    Abstract: The present invention discloses an integrated research and development system for high-throughput preparation and statistical mapping characterization of materials, comprising: a high-throughput preparation module, a high-throughput characterization module, an automatic control module and a statistical mapping data processing module; the high-throughput preparation module is used for preparing a multi-component combinatorial-sample; the high-throughput characterization module comprises a plurality of different high-throughput characterization devices; the automatic control module comprises a special sample box, a sample moving platform, an intelligent mechanical arm and a synchronous control system; and the statistical mapping data processing module is used for constructing a statistical mapping constitutive model corresponding to position mapping according to the composition, microstructure and performance data of the combinatorial-sample. The present invention integrates multiple functions, has high automatic control level, improves the experimental speed and experimental efficiency.

    Method for automatic quantitative statistical distribution characterization of dendrite structures in a full view field of metal materials

    公开(公告)号:US11506650B2

    公开(公告)日:2022-11-22

    申请号:US17009117

    申请日:2020-09-01

    Abstract: The invention belongs to the technical field of quantitative statistical distribution analysis for micro-structures of metal materials, and relates to a method for automatic quantitative statistical distribution characterization of dendrite structures in a full view field of metal materials. According to the method based on deep learning in the present invention, dendrite structure feature maps are marked and trained to obtain a corresponding object detection model, so as to carry out automatic identification and marking of dendrite structure centers in a full view field; and in combination with an image processing method, feature parameters in the full view field such as morphology, position, number and spacing of all dendrite structures within a large range are obtained quickly, thereby achieving quantitative statistical distribution characterization of dendrite structures in the metal material. The method is accurate, automatic and efficient, involves a large amount of quantitative statistical distribution information, and is statistically more representative as compared with the traditional measurement of feature sizes of dendrite structures in a single view field.

Patent Agency Ranking