Abstract:
There is provided a reference leak generating device capable of precisely generating an ultra-fine reference leak. The reference leak generating device adapted to be connected to an upstream side of a measurement chamber includes a chamber connected to the measurement chamber through an orifice or a porous plug having a molecular flow conductance C and a pressure to establish molecular flow conditions which are known in advance, and is characterized in that a pressure p 1 of testing gas to be introduced into the chamber is precisely determined by using a static expansion method once or more times, and a leak rate of a reference leak at the pressure p 1 is obtained in accordance with a product of C and P 1 .
Abstract:
Provided are: a vacuum gauge that, with a simple configuration, can accurately diagnose the degree of contamination of the vacuum gauge; and a contamination diagnosis method that, with a simple process, can accurately diagnose the degree of contamination of a vacuum gauge. Provided is a cold cathode ionization vacuum gauge that has a normal operation mode and a contamination diagnosis mode, the cold cathode ionization vacuum gauge comprising: an anode 1 and a cathode 3 that are for measuring vacuum pressure in the normal operation mode; an anode 7 and the cathode 3 that are for measuring the vacuum pressure in the contamination diagnosis mode; and a controller 10 that compares the size of a current measured between the anode 7 and the cathode 3 and the size of a current measured between the anode 1 and the cathode 3.
Abstract:
There is provided a reference leak generating device capable of precisely generating an ultra-fine reference leak. The reference leak generating device adapted to be connected to an upstream side of a measurement chamber includes a chamber connected to the measurement chamber through an orifice or a porous plug having a molecular flow conductance C and a pressure to establish molecular flow conditions which are known in advance, and is characterized in that a pressure p 1 of testing gas to be introduced into the chamber is precisely determined by using a static expansion method once or more times, and a leak rate of a reference leak at the pressure p 1 is obtained in accordance with a product of C and P 1 .