Abstract:
A coupon for preparing a TEM sample holder comprises a sheet of material that includes a TEM sample holder form. There is at least one section of the sheet connecting the TEM sample holder form to other portions of the sheet. A TEM sample holder is formed by cutting the TEM sample holder form from the coupon in a press. The cutting joins the tip point of a nano-manipulator probe tip with the formed TEM sample holder. The tip point of the probe has a sample attached for inspection in a TEM.
Abstract:
A coupon for preparing a TEM sample holder comprises a sheet of material that includes a TEM sample holder form. There is at least one section of the sheet connecting the TEM sample holder form to other portions of the sheet. A TEM sample holder is formed by cutting the TEM sample holder form from the coupon in a press. The cutting joins the tip point of a nano-manipulator probe tip with the formed TEM sample holder. The tip point of the probe has a sample attached for inspection in a TEM.
Abstract:
A method for processing a sample in a charged-particle beam microscope. A sample is collected from a substrate and the sample is attached to the tip of a nanomanipulator. The sample is optionally oriented to optimize further processing. The nanomanipulator tip is brought into contact with a stabilizing support to minimize drift or vibration of the sample. The attached sample is then stabilized and available for preparation and analysis.
Abstract:
A coupon (100) for preparing a TEM sample holder (170) comprises a sheet of material (120) that includes a TEM sample holder form (170). There is at least one section of the sheet (120) connecting the TEM sample holder form (170) to other portions of the sheet (120). A TEM sample holder (170) is formed by cutting the TEM sample holder form (170) from the coupon in a press. The cutting joins the tip point (160) of a nano-manipulator probe tip (150) with the formed TEM sample holder (170). The tip point (160) of the probe (150) has a sample (140) attached for inspection in a TEM.
Abstract:
An apparatus for monitoring sample milling in a charged-particle instrument has a variable-tilt specimen holder (130) attached to the instrument tilt stage (120). The variable-tilt specimen holder (130) includes a first pivoting plate (260) having a slot (280) for holding a specimen (290) rotatably supported in the variable-tilt specimen holder (130). The first pivoting plate (260) has a range of rotation sufficient to move the preferred axis of thinning of the specimen (290) from a first position where the tilt stage (120) is placed at its maximum range of tilt and the angle between the preferred axis of thinning of the specimen (290) and the axis of the ion beam column (110) of the instrument is greater than zero, to a second position where the preferred axis for thinning of the specimen (290) is substantially parallel to the axis of the ion-beam column (110). A light detector (250) is positioned to intercept light passing through the specimen (290) as it is thinned by ion-beam milling. The intensity of the light passing through the specimen (290) may be compared to the intensity recorded for previous stages of milling to determine an endpoint for milling
Abstract:
We disclose methods for materials deposition on a surface (120) inside an energetic-beam instrument, where the energetic-beam instrument is provided with a laser beam (170), an electron beam (100), and a source (130) of precursor gas (150). The electron beam (100) is focused on the surface (120), and the laser beam (170) is focused to a focal point (190) that is at a distance (200) above the surface (120) of about 5 microns to one mm, preferably from 5 to 50 microns. The focal point (190) of the laser beam (170) will thus be within the stream of precursor gas (150) injected at the sample surface (120), so that the laser beam (170) will facilitate reactions in this gas cloud with less heating of the surface (120).
Abstract:
This disclosure relates to a method and apparatus for producing multiple pixel-by-pixel simultaneous and overlapping images of a sample (100) in a microscope (10) with multiple imaging beams (120, 130). A scanning electron microscope, a focused ion-beam microscope (10), or a microscope having both beams (120, 130), also has an optical microscope (140). A region of interest (210) on a sample (100) is scanned by both charged-particle (120) and optical (130) beams, either by moving the sample (100) beneath the beams (120, 130) by use of a mechanical stage (110), or by synchronized scanning of the stationary sample (100) by the imaging beams (120, 130), or by independently scanning the sample (100) with the imaging beams (120, 130) and recording imaging signals so as to form pixel-by-pixel simultaneous and overlapping images.
Abstract:
A single-channel optical processing system for an energetic-beam instrument has separate sources for processing radiation (170) and illumination radiation (180) that are combined in a single optical path and directed to a sample surface (140) through a selffocusing rod lens (130). The self-focusing rod lens (130) thus has a working distance from the sample surface (140) that will not interfere with typical arrangements of ion beams (100) and electron beams (110) in such instruments. A combination of polarizers (220) and beam splitters (240) allows separation of the combined incident radiation (150) and the reflected radiation (160) from the sample surface (140) and returned through the same optical channel, so that the reflected radiation (160) may be directed to an optical detector (370), such as a camera or spectrometer.