Abstract:
Method for exposing photo resists using programmable masks (74) increases imaging resolution to provide fully dense integrated circuit patterns made of very small features on photoresist-coated silicon wafers by optical lithography. Small features are created by means of overlap exposure (52) with either programmable or conventional masks. Blocking photoresists responding differently to two different wavelengths or light (80, 82), two-color photoresists requiring two wavelengths of light to change solubility, and two-photon photoresists which change solubility only by absorbing two photons at a time may be used.
Abstract:
An integrated circuit is made by depositing a pinning layer on a substrate. A block copolymer photoresist is formed on the pinning layer. The block copolymer has two blocks A and B that do not self-assemble under at least some annealing conditions. The exposed block copolymer photoresist is processed to cleave at least some block copolymer bonds in the exposed selected regions. The exposed pinning layer is processed to create a chemical epitaxial pattern to direct the local self assembly of the block copolymer.
Abstract:
New routes involving multi-step reversible photo-chemical reactions using two-step techniques to provide non-linear resist for lithography are described in this disclosure. They may provide exposure quadratically dependant on the intensity of the light. Several specific examples, including but not limited to using nanocrystals, are also described. Combined with double patterning, these approaches may create sub-diffraction limit feature density.
Abstract:
Semiconductor nano-particles, due to their specific physical properties, can be used as optical modulator and reversible photo-bleachable materials for a wide spectrum, from far infrared to deep U.V. In this patent, nano-particles are provided with control circuitry to form a programmable mask. The optical characteristics of the nano-particles change to provide patterned light. Such patterned light can be used for example to expose a photoresist on a semiconductor wafer for photolithography. Other applications include, reversible contrast enhancement layer (R-CEL) in optical lithography, lithography mask inspection and writing and optical storage technologies.
Abstract:
This presently disclosed technology relates to Organic Light Emitting Diodes (OLEDs), more particularly it relates to OLED display extraction and nanocomposite formulations that can be used for the light extraction structure. The OLEDs comprise, in order, an encapsulation layer or a substrate layer, an array of lenses, and an array of light emitting pixels at least partially covered by said array of lenses, wherein at least one of the lenses covers at least one of the pixel, and said lenses comprises a material with higher refractive index than the encapsulation layer or substrate layer.
Abstract:
Advanced techniques for programmable photolithography provide enhanced resolution and other aspects of a photolithography system. A combination of multiple exposures and movement of a substrate (W) relative to a programmable mask (M) in a photolithographic system accomplishes single shutter exposure overlaps to create features smaller than the single shutter intensity profile, i.e., sub-pixel resolution. Advanced timing adjustment capabilities are used to modulate the light (I) so that no unwanted features are created. Additionally, a library of shapes may be used, one shape on each pixel, with the small features of the shapes created by phase shifting. Patterns are built up by multiple exposures with relative movement of the mask and resist so as to place each shape from the library where it is needed on the resist. Electro-Optic phase shifting material (P) may be applied to the shutter so as to adjust the single shutter intensity profile, or to adjust the interaction of adjacent shutters. An apodizing mask (A) may be used to engineer the wavefronts of the light striking the resist in such a manner to achieve better resolution.
Abstract:
New routes involving multi-step reversible photo-chemical reactions using two-step techniques to provide non-linear resist for lithography are described in this disclosure. They may provide exposure quadratically dependant on the intensity of the light. Several specific examples, including but not limited to using nanocrystals, are also described. Combined with double patterning, these approaches may create sub-diffraction limit feature density.
Abstract:
Semiconductor nano-particles, due to their specific physical properties, can be used as optical modulator and reversible photo-bleachable materials for a wide spectrum, from far infrared to deep U.V. In this patent, nano-particles are provided with control circuitry to form a programmable mask. The optical characteristics of the nano-particles change to provide patterned light. Such patterned light can be used for example to expose a photoresist on a semiconductor wafer for photolithography. Other applications include, reversible contrast enhancement layer (R-CEL) in optical lithography, lithography mask inspection and writing and optical storage technologies.