Abstract:
A pressure cycling system includes a reaction chamber configured to receive a sample and a charge pump in fluid communication with the reaction chamber. The charge pump is operable to convey a fluid from a fluid source toward the reaction chamber. The system also includes a check valve disposed between the charge pump and the reaction chamber. The check valve is operable to inhibit the flow of fluid from the reaction chamber toward the charge pump. A pressure intensifier is in fluid communication with the reaction chamber. The pressure intensifier is pneumatically operable to adjust a pressure in the reaction chamber. A controller is configured to control operation of the charge pump and the pressure intensifier. The controller is configured to pressurize the reaction chamber to a first pressure through operation of the charge pump. The controller is also configured to fluctuate the pressure in the reaction chamber between a second pressure and a third pressure through operation of the pressure intensifier.
Abstract:
The systems and techniques of the present invention can also synergistically utilize mechanical disruption processes with the use of high hydrostatic pressure extraction, such as pressure cycling extraction techniques to achieve high yield of difficult to extract sample constituents without generating high shear stress or high temperatures.
Abstract:
A pressure cycling system includes a reaction chamber configured to receive a sample and a charge pump in fluid communication with the reaction chamber. The charge pump is operable to convey a fluid from a fluid source toward the reaction chamber. The system also includes a check valve disposed between the charge pump and the reaction chamber. The check valve is operable to inhibit the flow of fluid from the reaction chamber toward the charge pump. A pressure intensifier is in fluid communication with the reaction chamber. The pressure intensifier is pneumatically operable to adjust a pressure in the reaction chamber. A controller is configured to control operation of the charge pump and the pressure intensifier. The controller is configured to pressurize the reaction chamber to a first pressure through operation of the charge pump. The controller is also configured to fluctuate the pressure in the reaction chamber between a second pressure and a third pressure through operation of the pressure intensifier.
Abstract:
Described herein is a sample preparation device including a sample delivery source, an inline means of transferring the sample from the sample source into a deformable channel within a pressure vessel, and out of the channel into downstream analysis components, a deformable channel disposed within the pressure vessel, the deformable channel having an inlet end and an outlet end fluidly connectable to high pressure valves and a means to measure the fluid pressure within the deformable channel, an external source of a controlled pressurized fluid fluidly connectable to the pressure vessel and a controller system that monitors and controls the sample fluid pressure by control of the external pressure vessel fluid.
Abstract:
A method and apparatus for diagnosing components in high-pressure pumps to indicate when a component of the pump head is malfunctioning and to identify the malfunctioning component. In one embodiment, a high-pressure pump head incorporating a diagnostic system in accordance with the invention has a pressurization chamber and a pressurizing member at least partially received in the pressurization chamber. The pressurizing member moves within the pressurization chamber along an intake action to draw fluid into the pressurization chamber and along a pressurizing action to compress fluid in the pressurization chamber. An inlet fluid control assembly is coupled to the pressurization chamber to allow fluid to enter the pressurization chamber during the intake action, and a pressurized fluid control assembly is coupled between the pressurization chamber and an outlet chamber to selectively allow pressurized fluid into the outlet chamber during the pressurizing action. The pump head may also include a diagnostic system to indicate the operational status of each of the inlet fluid control assembly, the pressurized fluid control assembly and other components of the pump head upstream from the inlet fluid control assembly with respect to a fluid flow through the pump head during the pressurizing action.
Abstract:
A connector for a pressure vessel includes a connector assembly having a first plurality of contacts, and a receiver assembly configured to be positioned within a receiver aperture formed in a closure of the pressure vessel and having a second plurality of contacts. The receiver assembly is configured to receive the connector assembly and place each of the first plurality of contacts in electrical contact with a corresponding one of the second plurality of contacts. A seal is provided between the connector assembly and the wall of the pressure vessel, for substantially sealing the receiver aperture from pressure within the vessel. The connector assembly is configured to be coupled to a product carrier, and sensors positioned in the vessel are coupled via the connector assembly to a data acquisition unit. When the closure is lowered onto the vessel, the receiver assembly contacts the connector assembly coupled to the carrier, closing the electrical contacts connecting the sensors to the acquisition unit.
Abstract:
Methods for preparing juices having an extended shelf-life without the need for pasteurization are disclosed. Such methods employ ultra high pressure (UHP) to substantially inactivate microorganisms associated with juices. The resulting juice products retain many of the preferred fresh juice characteristics such as taste, nutrition, texture and color, characteristics that may be destroyed or diminished by thermal processing or pasteurization.
Abstract:
A high pressure valve includes a lever and a variable force generator for facilitating control of opening and closing the valve at high pressures. The high pressure valve includes a housing having a chamber providing fluid communication between a first port and a second port, a pin movable within the chamber between an open position and a closed position. A first end of a lever is coupled to the pin and a second end of the lever is coupled to a variable force generator. The lever pivots about a pivot point. A controller coupled to the variable force generator is configured to adjust a force applied to the second end of the lever by the variable force generator to control the movement of the pin between the open position and the closed position.
Abstract:
A valve includes a valve seat body received by a sleeve with an interference fit between the valve seat body and the sleeve. An upper end of the sleeve extends beyond an upper end of the valve seat body. A valve assembly including the valve is also provided.
Abstract:
The present invention is related to systems and methods for chemical and biological analysis and, in particular, to systems, apparatus, and methods of sample conditioning and analysis.