Abstract:
The flash and SRAM memory (112, 113) are embedded within an application specific integrated circuit (ASIC) to provide improved access times and also reduce over all power consumption of a mobile telephone employing the ASIC. The flash memory system (112) includes a flash memory array (130) configured to provide a set of individual flash macros and a flash memory controller (132) for accessing the flash macros. The flash memory controller includes a read while writing unit (144, 146) for writing to one of the flash macros while simultaneously reading from another of the flash macros. The flash memory controller also includes programmable wait state registers (138) and a password register (140) providing a separate password for different portions of the flash memory array. A memory swap unit (149) is provided for swapping high and low memory subsequent to completion of operations performed by the boot loader. Method and apparatus implementations are disclosed.
Abstract:
The flash and SRAM memory (112, 113) are embedded within an application specific integrated circuit (ASIC) to provide improved access times and also reduce over all power consumption of a mobile telephone employing the ASIC. The flash memory system (112) includes a flash memory array (130) configured to provide a set of individual flash macros and a flash memory controller (132) for accessing the flash macros. The flash memory controller includes a read while writing unit (144, 146) for writing to one of the flash macros while simultaneously reading from another of the flash macros. The flash memory controller also includes programmable wait state registers (138) and a password register (140) providing a separate password for different portions of the flash memory array. A memory swap unit (149) is provided for swapping high and low memory subsequent to completion of operations performed by the boot loader. Method and apparatus implementations are disclosed.
Abstract:
The flash and SRAM memory (112, 113) are embedded within an application specific integrated circuit (ASIC) to provide improved access times and also reduce over all power consumption of a mobile telephone employing the ASIC. The flash memory system (112) includes a flash memory array (130) configured to provide a set of individual flash macros and a flash memory controller (132) for accessing the flash macros. The flash memory controller includes a read while writing unit (144, 146) for writing to one of the flash macros while simultaneously reading from another of the flash macros. The flash memory controller also includes programmable wait state registers (138) and a password register (140) providing a separate password for different portions of the flash memory array. A memory swap unit (149) is provided for swapping high and low memory subsequent to completion of operations performed by the boot loader. Method and apparatus implementations are disclosed.
Abstract:
The flash and SRAM memory (112, 113) are embedded within an application specific integrated circuit (ASIC) to provide improved access times and also reduce over all power consumption of a mobile telephone employing the ASIC. The flash memory system (112) includes a flash memory array (130) configured to provide a set of individual flash macros and a flash memory controller (132) for accessing the flash macros. The flash memory controller includes a read while writing unit (144, 146) for writing to one of the flash macros while simultaneously reading from another of the flash macros. The flash memory controller also includes programmable wait state registers (138) and a password register (140) providing a separate password for different portions of the flash memory array. A memory swap unit (149) is provided for swapping high and low memory subsequent to completion of operations performed by the boot loader. Method and apparatus implementations are disclosed.
Abstract:
The flash and SRAM memory (112, 113) are embedded within an application specific integrated circuit (ASIC) to provide improved access times and also reduce over all power consumption of a mobile telephone employing the ASIC. The flash memory system (112) includes a flash memory array (130) configured to provide a set of individual flash macros and a flash memory controller (132) for accessing the flash macros. The flash memory controller includes a read while writing unit (144, 146) for writing to one of the flash macros while simultaneously reading from another of the flash macros. The flash memory controller also includes programmable wait state registers (138) and a password register (140) providing a separate password for different portions of the flash memory array. A memory swap unit (149) is provided for swapping high and low memory subsequent to completion of operations performed by the boot loader. Method and apparatus implementations are disclosed.
Abstract:
The flash and SRAM memory (112, 113) are embedded within an application specific integrated circuit (ASIC) to provide improved access times and also reduce over all power consumption of a mobile telephone employing the ASIC. The flash memory system (112) includes a flash memory array (130) configured to provide a set of individual flash macros and a flash memory controller (132) for accessing the flash macros. The flash memory controller includes a read while writing unit (144, 146) for writing to one of the flash macros while simultaneously reading from another of the flash macros. The flash memory controller also includes programmable wait state registers (138) and a password register (140) providing a separate password for different portions of the flash memory array. A memory swap unit (149) is provided for swapping high and low memory subsequent to completion of operations performed by the boot loader. Method and apparatus implementations are disclosed.
Abstract:
Sistema de memoria flash (112) que comprende: unas celdas de memoria flash dispuestas como un conjunto de macros flash (130), y unos medios de lectura durante escritura (144, 146) para escribir en una de dichas macros flash, mientras se lee simultáneamente en otra de dichas macros flash; en el que el sistema está conectado a un microprocesador (102) y en el que dichos medios de lectura durante escritura (144, 146) incluyen: unos medios de escritura (146) para escribir las señales recibidas desde el microprocesador a una macro seleccionada de dichas macros flash (130); y caracterizado porque dichos medios de lectura durante escritura incluyen además unos medios de suspensión, sensibles a la recepción de un mandato de lectura del microprocesador dirigido a dicha macro seleccionada de dichas macros flash, para suspender la operación del microprocesador hasta que los medios de escritura (146) hayan finalizado su operación, y para ejecutar el mandato de lectura.
Abstract:
The flash and SRAM memory (112, 113) are embedded within an application specific integrated circuit (ASIC) to provide improved access times and also reduce over all power consumption of a mobile telephone employing the ASIC. The flash memory system (112) includes a flash memory array (130) configured to provide a set of individual flash macros and a flash memory controller (132) for accessing the flash macros. The flash memory controller includes a read while writing unit (144, 146) for writing to one of the flash macros while simultaneously reading from another of the flash macros. The flash memory controller also includes programmable wait state registers (138) and a password register (140) providing a separate password for different portions of the flash memory array. A memory swap unit (149) is provided for swapping high and low memory subsequent to completion of operations performed by the boot loader. Method and apparatus implementations are disclosed.
Abstract:
The flash and SRAM memory (112, 113) are embedded within an application specific integrated circuit (ASIC) to provide improved access times and also reduce over all power consumption of a mobile telephone employing the ASIC. The flash memory system (112) includes a flash memory array (130) configured to provide a set of individual flash macros and a flash memory controller (132) for accessing the flash macros. The flash memory controller includes a read while writing unit (144, 146) for writing to one of the flash macros while simultaneously reading from another of the flash macros. The flash memory controller also includes programmable wait state registers (138) and a password register (140) providing a separate password for different portions of the flash memory array. A memory swap unit (149) is provided for swapping high and low memory subsequent to completion of operations performed by the boot loader. Method and apparatus implementations are disclosed.
Abstract:
The flash and SRAM memory are embedded within an application specific integrated circuit (ASIC) to provide improved access times and also reduce overall power consumption of a mobile telephone employing the ASIC. The flash memory system includes a flash memory array configured to provide a set of individual flash macros and a flash memory controller for accessing the flash macros. The flash memory controller includes a read while writing unit for writing to one of the flash macros while simultaneously reading from another of the flash macros. By permitting read while writing, read operations need not be deferred until completion of pending write operations. The flash memory controller also includes programmable wait state registers. Each wait state register stores a programmable number of flash bus wait states associated with a portion of the flash memory. Thus, portions of flash memory subject to flash memory degradation may be programmed with a higher number of wait states than portions of memory that are not subject to degradation.