Abstract:
A packaged semiconductor product includes a packaging substrate coupled to a semiconductor die through an interconnect structure with elements of variable features. The interconnect structure may be bumps or pillars. The variable features of the interconnect structure induce a reverse bend on the semiconductor die that mitigates warpage of the semiconductor die during semiconductor assembly by balancing bending of the packaging substrate during reflow. The variable features can be variable height and/or variable composition.
Abstract:
Copper (Cu) grain boundaries can move during a thermal cycle resulting in the Cu grain position being offset. Such Cu pumping can disturb the surface of a bottom metal, and can physically break a dielectric of a metal-insulator-metal (MIM) capacitor (410). By capping the bottom metal (420) under the MIM capacitor with an anchoring cap (425), Cu pumping is reduced or eliminated and the reliability of the MIM capacitor is improved.
Abstract:
A voltage-switchable dielectric layer may be employed on a die for electrostatic discharge (ESD) protection. The voltage-switchable dielectric layer functions as a dielectric layer between terminals of the die during normal operation of the die. When ESD events occur at the terminals of the die, a high voltage between the terminals switches the voltage-switchable dielectric layer into a conducting layer to allow current to discharge to a ground terminal of the die without the current passing through circuitry of the die. Thus, damage to the circuitry of the die is reduced or prevented during ESD events on dies with the voltage-switchable dielectric layer. The voltage-switchable dielectric layer may be deposited on the back side of a die for protection during stacking with a second die to form a stacked IC.
Abstract:
A hybrid interconnect includes a through silicon via and a wire bond. Hybrid interconnects enable better layout of a stacked IC by combining benefits from both interconnect technologies. In one hybrid interconnect, wire bonds couples a second tier die mounted on a first tier die to a redistribution layer in the first tier die. Through silicon vias in the first tier die are coupled to the wire bonds to provide communication. In another hybrid interconnect, a wire bond couples a redistribution layer on a first tier die to a packaging substrate on which the first tier die is mounted. The redistribution layer couples to a second tier die mounted on the first tier die to provide a power supply to the second tier die. Through silicon vias in the first tier die couple to the second tier die to provide communication from the packaging substrate to the second tier die.