Abstract:
Various embodiments of methods and systems for intelligent thermal power management implemented in a portable computing device ("PCD") are disclosed. To mitigate or alleviate unwanted workload migration that could exacerbate a thermal energy generation event in a processing component having heterogeneous processing core clusters, embodiments of the solution apply mitigation measures in a predetermined order to the large cluster before applying any thermal mitigation measures to the small cluster.
Abstract:
Various embodiments of methods and systems for intelligent thermal power management implemented in a portable computing device ("PCD") are disclosed. To mitigate or alleviate unwanted workload migration that could exacerbate a thermal energy generation event in a processing component having heterogeneous processing core clusters, embodiments of the solution apply mitigation measures in a predetermined order to the large cluster before applying any thermal mitigation measures to the small cluster.
Abstract:
A method includes generating temperature information from a plurality of temperature sensors within a computing device, wherein a first one of the temperature sensors is physically located at a first processing unit of the computing device; processing the temperature information to identify that the first temperature sensor is associated with temperature that is at or above a threshold; and assigning a processing thread to a first core of a plurality of cores of a second processing unit in response to identifying that the first temperature sensor is associated with temperature that is at or above the threshold and based at least in part on a physical distance between the first core and the first temperature sensor.
Abstract:
A system, a method and an apparatus are described. The apparatus includes a modem that responds to a thermal mitigation request by invoking different levels of thermal mitigation for different concurrently active connections. In some instances, the modem may invoke thermal mitigation with respect to a first active connection and refrain from invoking thermal mitigation with respect to a second active connection maintained by the modem. The apparatus determines the first and second active connections based on subscriptions corresponding to subscriber identification modules, an identification of a power amplifier or group of power amplifiers responsible for a thermal issue in the modem. The selection of mitigation levels for each active connection and decisions to invoke mitigation on one connection while refraining from invoking mitigation on another connection may be based on priorities of the active connections, including quality of service related priorities.
Abstract:
Embodiments include methods performed by a processor of a vehicle. The processor may determine a priority to safe vehicle operations of each of a plurality of vehicle applications based on relative impacts on driver performance of safety-related tasks under one or more current vehicle conditions. The processor may determine a driver-performance-safety factor for each of the plurality of vehicle applications. The processor may allocate computing resources to each of the plurality of vehicle applications based on the determined driver-performance-safety factor of each vehicle application.
Abstract:
Disclosed are methods and systems for intelligent adjustment of an immersive multimedia workload in a portable computing device ("PCD"), such as a virtual reality ("VR") or augmented reality ("AR") workload. An exemplary embodiment monitors one or more performance indicators comprising a motion to photon latency associated with the immersive multimedia workload. Performance parameters associated with thermally aggressive processing components are adjusted to reduce demand for power while ensuring that the motion to photon latency is and/or remains optimized. Performance parameters that may be adjusted include, but are not limited to including, eye buffer resolution, eye buffer MSAA, timewarp CAC, eye buffer FPS, display FPS, timewarp output resolution, textures LOD, 6DOF camera FPS, and fovea size.
Abstract:
Various embodiments of methods and systems context-aware thermal management in a portable computing device ("PCD") are disclosed. Notably, the environmental context to which a PCD is subjected may have significant impact on the PCD's thermal energy dissipation efficiency. Embodiments of the solution seek to leverage knowledge of a PCD's environmental context to modify or adjust thermal policy parameters applied within a PCD in response to a thermal event within the PCD.