Abstract:
Various embodiments of methods and systems for estimating environmental ambient temperature of a portable computing device ("PCD") from electrical resistance measurements taken voice coils in a speaker or microphone component are disclosed. In an exemplary embodiment, it may be recognized that the PCD is in an idle state, thus producing little or no thermal energy. Electrical resistance measurements are taken from a voice coil and used to estimate the environmental ambient temperature to which the PCD is exposed. Certain embodiments may simply render the estimated ambient temperature for the benefit of the user or use the estimated ambient temperature as an input to a program or application running on the PCD. It is envisioned that certain embodiments of the systems and methods may use the estimated ambient temperature to adjust temperature thresholds in the PCD against which thermal management policies govern thermally aggressive processing components.
Abstract:
Because the touch temperature of a wearable computing device ("WCD") may be an insignificant factor for user experience when the WCD is not being worn by a user, embodiments of the solution seek to modify thermal management policies based on an inferred user proximity state. Exemplary embodiments monitor one or more signals from readily available sensors in the WCD that have primary purposes other than measuring user proximity. Depending on embodiment, the sensors may be selected from a group consisting of a heart rate monitor, a pulse monitor, an O2 sensor, a bio-impedance sensor, a gyroscope, an accelerometer, a temperature sensor, a pressure sensor, a capacitive sensor, a resistive sensor and a light sensor. Using the signals generated by such sensors, relative physical proximity of the WCD to a user may be inferred and, based on the user proximity state, thermal policies either relaxed or tightened.
Abstract:
A device that includes a region comprising an integrated device and a heat dissipating device coupled to the region comprising the integrated device. The heat dissipating device is configured to dissipate heat away from the region. The heat dissipating device includes a fluid, an evaporator configured to evaporate the fluid, a first condenser configured to condense the fluid, where the first condenser is located in a first wall of the device, an evaporation portion coupled to the evaporator and the first condenser, and a collection portion coupled to the first condenser and the evaporator. The evaporation portion is configured to channel an evaporated fluid from the evaporator to the first condenser. The collection portion is configured to channel a condensed fluid from the first condenser to the evaporator through the help of gravity.
Abstract:
An innovative passive cooling solution with sealed UAV enclosure system allows heat from a semiconductor chip to be dissipated to the ambient environment through evaporation/condensation phase-change cooling and air cooling a heat sink such as a fin (140) without any additional power consumption to operate cooling solution. One example of such a solution may include a pipe (105) with a fin and a fluid. The pipe may include a wick structure (150) along an inner surface of the pipe configured to allow the fluid to travel within the wick structure and to allow a vapor form of the fluid to exit the wick structure towards a center of the pipe.
Abstract:
Various embodiments of methods and systems context-aware thermal management in a portable computing device ("PCD") are disclosed. Notably, the environmental context to which a PCD is subjected may have significant impact on the PCD's thermal energy dissipation efficiency. Embodiments of the solution seek to leverage knowledge of a PCD's environmental context to modify or adjust thermal policy parameters applied within a PCD in response to a thermal event within the PCD.
Abstract:
A device that includes a region comprising an integrated device and a heat dissipating device coupled to the region comprising the integrated device. The heat dissipating device is configured to dissipate heat away from the region. The heat dissipating device includes a fluid, an evaporator configured to evaporate the fluid, a first condenser configured to condense the fluid, where the first condenser is located in a first wall of the device, an evaporation portion coupled to the evaporator and the first condenser, and a collection portion coupled to the first condenser and the evaporator. The evaporation portion is configured to channel an evaporated fluid from the evaporator to the first condenser. The collection portion is configured to channel a condensed fluid from the first condenser to the evaporator through the help of gravity.