Abstract:
Disclosed is a method and apparatus for generating a real-world traffic model. The apparatus obtains a first set of device map information associated with one or more devices that are in proximity with a first device, and obtains a second set of device map information associated with one or more devices that are in proximity with a second device. The apparatus determines whether the first set of device map information and the second set of device map information contain at least one common device and in response to the determination that the first set of device map information and the second set of device map information contain at least one common device, and generates a real-world traffic model of devices based on the first set of device map information and the second set of device map information.
Abstract:
Techniques described herein include utilizing a mobile device as a proxy receiver and/or transmitter for a vehicle in a V2X network. In some embodiments, the mobile device associated mobile device capabilities may be configured to obtain vehicle capabilities and store such data in memory at the mobile device. The mobile device may obtain any suitable combination of a reception credential and one or more transmission credentials. In some embodiments, the one or more transmission credentials may be generated by a credential authority based at least in part on determining that the vehicle capabilities and mobile device capabilities indicate that the sensor(s) and/or processing resources of the vehicle and/or mobile device meet transmission requirement thresholds for the network. The mobile device may subsequently transmit any suitable data message on behalf of the vehicle using at least one of the transmission credentials.
Abstract:
A user device and transportation entity, such as a transport vehicle or transport server, perform information exchanges for a transportation service using Device-to-Device (D2D) communications, such as dedicated short-range communication (DSRC), a cellular Vehicle-to-Everything (C-V2X), or a 5G New Radio (NR). The information exchanges, for example, are related to, e.g., logistics and delivery of transportation services. For example, the user device may transmit a transportation request message that includes information elements, such as an identifier, a type of transport device requested, a number of users, requested destination, etc. The transportation entity may transmit a transportation response message accepting or rejecting the request. Additional messages, such as a status request and status of the transportation, as well as messages related to completing the transportation service may be exchanged.
Abstract:
Disclosed is a method and apparatus for operating a first device. The first device obtains environment information in proximity to the first device and receives one or more communication messages from a second device and the message(s) includes relevance criteria, wherein the relevance criteria indicates one or more devices, one or more sets of device characteristics, one or more lanes, one or more intersections or areas, one or more pedestrian paths or bicycle paths, one or more signal characteristics from the second device or any combination thereof. The first device determines whether the one or more communication messages are relevant to the first device based on the relevance criteria and the environment information and performs an operation in response to the determination of whether the one or more communication messages are relevant.
Abstract:
Various embodiments enable delivering an item using an unmanned autonomous vehicle (UAV) in response to receiving an electronic order for an item. Order parameters may be determined based on the electronic order identifying the item and details regarding delivery of the item. UAV components may be selected for operating the UAV based on UAV parameters meeting the order parameters. UAV-compliant packaging parameters may be determined for transporting the item carried by the UAV. Selected UAV-compliant packaging may enable the UAV to meet at least some of the order parameters and the UAV parameters. Assembly of the UAV may be coordinated to include the selected UAV components and selected UAV-compliant packaging with the item therein. The selected UAV-compliant packaging may meet the determined UAV-compliant packaging parameters. The assembled UAV and packaging may be dispatched for delivering the item.
Abstract:
Techniques are provided for responding to congestion-sensitive preemptive data download requests in a V2X network. An example method for downloading data on a mobile device includes determining an estimated time of arrival at a station based at least in part on almanac information, generating a data download request based at least in part on the estimated time of arrival at the station, transmitting the data download request, and receiving one or more data packets from the station based on the data download request.