Abstract:
Aspects of the disclosure relate to a ring oscillator (RO) frequency divider configured to frequency divide an input clock by a programmable divider ratio to generate an output clock. In this regard, the RO frequency divider receives the input clock, enables each of a ring of N cascaded inverter stages substantially one at a time in response to the input clock; and outputs a second clock from an output of one of the ring of N cascaded inverter stages. In one aspect, each stage includes a p-channel metal oxide semiconductor field effect transistor (PMOS FET) coupled in series with an n-channel metal oxide semiconductor field effect transistor (NMOS FET). In another, each stage includes two PMOS FETs and an NMOS FET.
Abstract:
A method includes generating a first signal based on a difference between a first frequency of a first voltage controlled oscillator (VCO) and a second frequency of a second VCO. The method further includes determining a gain of the first VCO at least partially based on the first signal.
Abstract:
A frequency divider functionality detection and adjustment circuit includes an auxiliary voltage controlled oscillator (VCO) coupled to a first multiplexer (MUX), a programmable divider coupled to the first MUX, a second MUX coupled to the programmable divider, a counter coupled to the second MUX, and a controller coupled to the counter, the controller configured to adjust a supply voltage provided to the programmable divider based on a measured divide ratio, NMEAS.
Abstract:
A hybrid true single-phase clock (H-TSPC) circuit includes a first logic circuit comprising non-ratio (NR) logic, a first mode switching device coupled to an output of the first logic circuit, a second logic circuit comprising ratio (R) logic, the second logic circuit configured to receive an output of the first logic circuit, a second mode switching device coupled to an output of the second logic circuit, a third logic circuit comprising non-ratio (NR) logic, the third logic circuit configured to receive an output of the second logic circuit, and a third mode switching device coupled to an output of the third logic circuit, wherein the first logic circuit, second logic circuit, and third logic circuit are configured in a ring.
Abstract:
This disclosure describes apparatuses, methods, and techniques for implementing a multimode frequency multiplier. In example implementations, an apparatus for generating a frequency includes a multimode frequency multiplier. The multimode frequency multiplier includes a multiphase generator and a reconfigurable frequency multiplier. The multiphase generator is configured to produce a first signal including multiple phase components and having a first frequency. The reconfigurable frequency multiplier is coupled in series with the multiphase generator. The reconfigurable frequency multiplier is configured to produce a second signal based on the first signal and having a second frequency that is a multiple of the first frequency.
Abstract:
A method includes generating a first signal based on a difference between a first frequency of a first voltage controlled oscillator (VCO) and a second frequency of a second VCO. The method further includes determining a gain of the first VCO at least partially based on the first signal.