Abstract:
A microelectromechanical systems device having support structures formed of sacrificial material that is selectively diffused with a dopant material or formed of a selectively oxidized metal sacrificial material. The microelectromechanical systems device includes a substrate having an electrode formed thereon. Another electrode is separated from the first electrode by a cavity and forms a movable layer, which is supported by support structures formed of a diffused or oxidized sacrificial material.
Abstract:
A microelectromechanical device (MEMS) utilizing a porous electrode surface for reducing stiction is disclosed. In one embodiment, a microelectromechanical device is an interferometric modulator 80 that includes a transparent electrode 81 having a first surface 81a; and a movable reflective electrode 82 with a second surface 82a facing the first surface 81a. The movable reflective electrode 82 is movable between a relaxed and actuated (collapsed) position. An aluminum layer is provided on either the first or second surface. The aluminum layer is then anodized to provide an aluminum oxide layer 83 which has a porous surface 83a. The porous surface 83a, in the actuated position, decreases contact area between the electrodes 81 and 82, thus reducing stiction.
Abstract:
A microelectromechanical device (MEMS) utilizing nanoparticles for reducing stiction is disclosed. In one embodiment, a microelectromechanical device is an interferometric modulator (80) that includes a transparent electrode assembly (81) having a first surface (81a); and a movable reflective electrode assembly (82) with a second surface (82a) facing the first surface (81a). The movable reflective electrode assembly (82) is movable between a relaxed and actuated (collapsed) position. Particles are deposited over the transparent electrode assembly (81) or over a sacrificial layer separating the two electrode assemblies. The particles lead to dimples (83) in the reflective surface (82a) of the movable reflective electrode assembly (82). The particles can be removed with the sacrificial layer or remain in final devices.
Abstract:
Methods of making MEMS devices including interferometric modulators involve depositing various layers, including stationary layers, movable layers and sacrificial layers, on a substrate. A non-planar surface is formed on one or more layers by flowing an etchant through a permeable layer. In one embodiment the non-planar surface is formed on a sacrificial layer. A movable layer formed over the non-planar surface of the sacrificial layer results in a non-planar interface between the sacrificial and movable layers. Removal of the sacrificial layer results in a released MEMS device having reduced contact area between the movable and stationary layers when the MEMS device is actuated. The reduced contact area results in lower adhesion forces and reduced stiction during actuation of the MEMS device. These methods may be used to manufacture released and unreleased interferometric modulators.
Abstract:
The fabrication of a MEMS device such as an interferometric modulator is improved by employing an etch stop layer 104b between a sacrificial layer and an electrode 14a, 14b, 14c. The etch stop 104b may reduce undesirable over-etching of the sacrificial layer and the electrode 14a, 14b, 14c. The etch stop layer 104b may also serve as a barrier layer, buffer layer, and/or template layer. The etch stop layer 104b may include silicon-rich silicon nitride.
Abstract:
MEMS devices (such as interferometric modulators) may be fabricated using a sacrificial layer that contains a heat vaporizable polymer to form a gap between a moveable layer and a substrate. One embodiment provides a method of making a MEMS device that includes depositing a polymer layer over a substrate, forming an electrically conductive layer over the polymer layer, and vaporizing at least a portion of the polymer layer to form a cavity between the substrate and the electrically conductive layer. Another embodiment provides a method for making an interferometric modulator that includes providing a substrate, depositing a first electrically conductive material over at least a portion of the substrate, depositing a sacrificial material over at least a portion of the first electrically conductive material, depositing an insulator over the substrate and adjacent to the sacrificial material to form a support structure, and depositing a second electrically conductive material over at least a portion of the sacrificial material, the sacrificial material being removable by heat-vaporization to thereby form a cavity between the first electrically conductive layer and the second electrically conductive layer.