Abstract:
A method of forming a wafer level packaged circuit device includes forming a device wafer, the device wafer including a first group of one or more material layers left remaining in a first region of a substrate of the device wafer; and forming a cap wafer configured to be attached to the device wafer, the cap wafer including a second group of one or more material layers left remaining in a second region of a substrate of the cap wafer; wherein a combined thickness of the first and second groups of one or more material layers defines an integrated bond gap control structure upon bonding of the device wafer and the cap wafer.
Abstract:
A microelectromechanical systems (MEMS) package includes a substrate extending between a first pair of outer edges to define a length and a second pair of outer edges to define a width. A seal ring assembly is disposed on the substrate and includes at least one seal ring creating a first boundary point adjacent to at least one MEMS device and a second boundary point adjacent at least one of the outer edges. The package further includes a window lid on the seal ring assembly to define a seal gap containing the at least one MEMS device. The seal ring assembly anchors the window lid to the substrate at the second boundary point such that deflection of the window lid into the seal gap is reduced.
Abstract:
A method of forming a wafer level packaged circuit device ,the method comprising forming a device wafer, forming a cap wafer,forming a cap wafer, forming,on either, one or more material layers used in the formation of either the cap wafer or the device wafer, and left remaining in a region of a substrate of either the cap wafer or the device wafer, and bonding the cap wafer to the device wafer.
Abstract:
A getter structure and method wherein a layer of seed material is deposited on a predetermined region of a surface of a structure under conditions to form a plurality of nucleation sites on a surface of the structure. The nucleation sites have an average height over the surface area of the predetermined region of less than one molecule thick. Subsequently a getter material is deposited over the surface to form a plurality of getter material members projecting outwardly from the nucleation sites.
Abstract:
A method of forming a wafer level packaged circuit device includes forming a device wafer, the device wafer including a first group of one or more material layers left remaining in a first region of a substrate of the device wafer; and forming a cap wafer configured to be attached to the device wafer, the cap wafer including a second group of one or more material layers left remaining in a second region of a substrate of the cap wafer; wherein a combined thickness of the first and second groups of one or more material layers defines an integrated bond gap control structure upon bonding of the device wafer and the cap wafer.
Abstract:
A microelectromechanical systems (MEMS) package includes a substrate extending between a first pair of outer edges to define a length and a second pair of outer edges to define a width. A seal ring assembly is disposed on the substrate and includes at least one seal ring creating a first boundary point adjacent to at least one MEMS device and a second boundary point adjacent at least one of the outer edges. The package further includes a window lid on the seal ring assembly to define a seal gap containing the at least one MEMS device. The seal ring assembly anchors the window lid to the substrate at the second boundary point such that deflection of the window lid into the seal gap is reduced.
Abstract:
A method of forming a wafer level packaged circuit device includes forming a device wafer, the device wafer including a first group of one or more material layers left remaining in a first region of a substrate of the device wafer; and forming a cap wafer configured to be attached to the device wafer, the cap wafer including a second group of one or more material layers left remaining in a second region of a substrate of the cap wafer; wherein a combined thickness of the first and second groups of one or more material layers defines an integrated bond gap control structure upon bonding of the device wafer and the cap wafer.