Abstract:
A shadow mask having two or more levels of openings enables selective step coverage of micro-fabricated structures within a micro-optical bench device. The shadow mask includes a first opening within a top surface of the shadow mask and a second opening within the bottom surface of the shadow mask. The second opening is aligned with the first opening and has a second width less than a first width of the first opening. An overlap between the first opening and the second opening forms a hole within the shadow mask through which selective coating of micro-fabricated structures within the micro-optical bench device may occur.
Abstract:
Aspects relate to a spectral analyzer that can be used for biological sample detection. The spectral analyzer includes an optical window configured to receive a sample and a spectral sensor including a chassis having various component assembled thereon. Examples of components may include a light source, a light modulator, illumination and collection optical elements, a detector, and a processor. The spectral analyzer is configured to obtain spectral data representative of a spectrum of the sample using, for example, an artificial intelligence (Al) engine. The spectral analyzer further includes a thermal separator positioned between the light modulator and the light source.
Abstract:
A Micro-Electro-Mechanical System (MEMS) apparatus provides for self- calibration of mirror positioning of a moveable mirror of an interferometer. At least one mirror in the MEMS apparatus includes a non-planar surface. The moveable mirror is coupled to a MEMS actuator having a variable capacitance. The MEMS apparatus includes a capacitive sensing circuit for determining the capacitance of the MEMS actuator at multiple reference positions of the moveable mirror corresponding to a center burst and one or more secondary bursts of an interferogram produced by the interferometer based on the non-planar surface. A calibration module uses the actuator capacitances at the reference positions to compensate for any drift in the capacitive sensing circuit.
Abstract:
Aspects relate to a spectroscopic analyzer device that can be used for biological sample detection, and specifically for virus infection detection. The spectroscopic analyzer device includes a spectrometer, such as a micro-electro-mechanical systems (MEMS) based infrared spectrometer, and an artificial intelligence (AI) for screening of viral samples. In addition, the spectroscopic analyzer device includes a light source and a disposable optical component configured to receive a sample and to facilitate light interaction with the sample.
Abstract:
A micro-optical bench device is fabricated by a process that provides control over one or more properties of the micro-optical bench device and/or one or more properties of optical surfaces in the micro-optical bench device. The process includes etching a substrate to form a permanent structure including optical elements and a temporary structure. The shape of the temporary structure and gaps between the temporary structure and permanent structure facilitate control of a property of the micro-optical bench and/or optical surfaces therein. The process further includes removing the temporary structure from an optical path of the micro- optical bench device.
Abstract:
A spatial splitting-based optical Micro Electro-Mechanical Systems (MEMS) Interferometer includes a spatial splitter for spatially splitting an input beam into two interferometer beams and a spatial combiner for spatially combining the two interferometer beams. A MEMS moveable mirror is provided to produce an optical path difference between the first interferometer beam and the second interferometer beam.
Abstract:
Aspects relate to on-line compensation of instrumental drifts in miniaturized spectrometers due to variations in environmental conditions and due to other sources of instrumental drift. The spectrometer may include a light modulator, a detector, and a processor. The spectrometer may further include a sensor configured to obtain a value of a condition contributing to instrumental drifts in the spectrometer. The processor may be configured to extract a set of correction parameters from a correction matrix associating a plurality of sets of correction parameters with sensor values based on the value and to apply the set of correction parameters to an output of the detector to produce a corrected spectrum of a sample under test. The correction matrix may be generated for the spectrometer or may be based on a global correction matrix fitted to the spectrometer.
Abstract:
Aspects relate to mechanisms for increasing the field of view of a spectrometer. An optical device may be configured to simultaneously couple light from different locations (spots) on a sample to the spectrometer to effectively increase the spectrometer field of view. The optical device can include a beam combiner and at least one reflector to reflect light beams from respective spots on the sample towards the beam combiner. The beam combiner can combine the received light beams from the different spots to produce a combined light beam that may be input to the spectrometer.
Abstract:
Aspects of the disclosure relate to a self-referenced spectrometer for providing simultaneous measurement of a background or reference spectral density and a sample or other spectral density. The self-referenced spectrometer includes an interferometer optically coupled to receive an input beam and to direct the input beam along a first optical path to produce a first interfering beam and a second optical path to produce a second interfering beam, where each interfering beam is produced prior to an output of the interferometer. The spectrometer further includes a detector optically coupled to simultaneously detect a first interference signal produced from the first interfering beam and a second interference signal produced from the second interfering beam, and a processor configured to process the first interference signal and the second interference signal and to utilize the second interference signal as a reference signal in processing the first interference signal.