Abstract:
A field emission display device has a faceplate and a backplate. The faceplate includes a faceplate interior side with an active region made of a plurality of phosphor pixel elements; and the backplate has a backplate interior side with a plurality of field emitters. Sidewalls are positioned between the faceplate and the backplate, to form an enclosed sealed envelope between the sidewalls, backplate interior side and the faceplate interior side. At least one spacer wall in the envelope supports the backplate and the faceplate against forces acting in a direction toward the envelope. At least one internal structure fixes and constrains the faceplate and the backplate, and aligns a plurality of phosphor pixels with corresponding field emitters. Additonally, the faceplate can include at least one faceplate fiducial, and the backplate include a corresponding backplate fiducial. The faceplate fiductial is optically aligned with the backplate fiducial. First, the spacer wall is positioned in the wall gripper. The faceplate and backplate fiducials are then optically aligned, and the spacer wall then introduced into the locator. Phosphor pixels are aligned with their corresponding field emitters. There is no need for external fixturing devices in the high temperature bonding and sealing processes of the display.
Abstract:
A flat panel device (300) includes a spacer (308) for providing internal support. The spacer can be made of ceramic or glass-ceramic. Spacer surfaces exposed within the flat panel device are treated to reduce secondary emissions and prevent charging of the spacer surfaces. A light-emitting structure contains a main section (302), a pattern of dark ridges (314) situated along the main section, and a plurality of electron-activated light-emissive regions (313) situated in spaces between the ridges. The dark ridges extend further away from the main section than the light-emissive regions to form a raised black matrix. When the light-emitting structure is used in an optical display, the raised black matrix contacts spacers (308) and, in so doing, protects the light-emissive regions from being damaged. The light-emitting structure can be formed according to various techniques of the invention.
Abstract:
An electron emitter suitable for a flat-panel CRT display is fabricated by a process in which charged particles are passed through a track layer (144) to create charged-particle tracks (1461). The track layer is etched along the tracks to form apertures (1481) that are employed in defining corresponding cap regions (150A) over an underlying emitter layer (142). After removing the track layer, part of the emitter layer is removed using the cap regions as masks to control the extent of the emitter material removed. Electron-emissive elements (142D), typically in the shape of cones, are thereby formed in the remainder (142C) of the emitter layer. The electron emitter can also be provided with a gate electrode (158C).
Abstract:
A method comprising the steps of: causing charged particles to pass through a track layer to form a multiplicity of charged-particle tracks therethrough; creating corresponding open spaces through the track layer by a procedure that entails etching the track layer along the charged-particle tracks; forming electron-emissive elements accessible through the open spaces in the track layer; and subsequently providing a patterned electrically non-insulating gate layer over the electron-emissive elements such that gate openings extend through the gate layer to enable each gate opening to expose at least one of the electron-emissive elements.
Abstract:
A gated field-emission structure contains a emitter electrode (46), an overlying electrically insulating layer (48, and one or more electron-emissive elements (52) situated in one or more apertures extending through the insulating layer. A patterned gate electrode (50) through which each electron-emissive element is exposed overlies the insulating layer. Focusing ridges (54) are situated on the insulating layer on opposite sides of the gate electrode. The focusing ridges, which normally extend to a considerably greater height than the gate electrode, cause emitted electrons to converge into a narrow band.
Abstract:
A method comprising the steps of: causing charged particles to pass through a track layer to form a multiplicity of charged-particle tracks therethrough; creating corresponding open spaces through the track layer by a procedure that entails etching the track layer along the charged-particle tracks; forming electron-emissive elements accessible through the open spaces in the track layer; and subsequently providing a patterned electrically non-insulating gate layer over the electron-emissive elements such that gate openings extend through the gate layer to enable each gate opening to expose at least one of the electron-emissive elements.