Abstract:
Disclosed herein, among other things, are systems and methods for improved circuit design for hearing assistance devices. One aspect of the present subject matter includes a hearing assistance device configured to compensate for hearing losses of a user. The hearing assistance device includes a flexible circuit substrate and an integrated circuit die embedded within the flexible circuit substrate. The integrated circuit die includes a digital signal processor (DSP) die, in an embodiment. In various embodiments, the DSP die includes a DSP configured to provide processing for the hearing assistance device.
Abstract:
Disclosed herein, among other things, are systems and methods for improved circuit design for hearing assistance devices. One aspect of the present subject matter includes a hearing assistance device configured to compensate for hearing losses of a user. The hearing assistance device includes a flexible circuit substrate and an integrated circuit die embedded within the flexible circuit substrate. The integrated circuit die includes a digital signal processor (DSP) die, in an embodiment. In various embodiments, the DSP die includes a DSP configured to provide processing for the hearing assistance device.
Abstract:
A hearing system includes one or more hearing devices configured to be worn by a user. Each hearing device includes a signal source that provides an input electrical signal representing a sound of a virtual source. A filter implements a head related transfer function (HRTF) to add spatialization cues associated with a virtual location of the virtual source to the electrical signal and outputs a filtered electrical signal that includes the spatialization cues. A speaker of the hearing device converts the filtered electrical signal into an acoustic signal and plays the acoustic signal to the user. The system includes motion tracking circuitry that tracks motion of the user as the user moves in a direction of a perceived location that the user perceives to be the virtual location of the virtual source. Head related transfer function (HRTF) individualization circuitry determines a difference between the virtual location and the perceived location in response to the motion of the user. The HRTF individualization circuitry individualizes the HRTF based on the difference.
Abstract:
A hearing system includes one or more hearing devices configured to be worn by a user. Each hearing device includes a signal source that provides an input electrical signal representing a sound of a virtual source. A filter implements a head related transfer function (HRTF) to add spatialization cues associated with a virtual location of the virtual source to the electrical signal and outputs a filtered electrical signal that includes the spatialization cues. A speaker of the hearing device converts the filtered electrical signal into an acoustic signal and plays the acoustic signal to the user. The system includes motion tracking circuitry that tracks motion of the user as the user moves in a direction of a perceived location that the user perceives to be the virtual location of the virtual source. Head related transfer function (HRTF) individualization circuitry determines a difference between the virtual location and the perceived location in response to the motion of the user. The HRTF individualization circuitry individualizes the HRTF based on the difference.
Abstract:
A hearing system includes one or more hearing devices configured to be worn by a user. Each hearing device includes a signal source that provides an input electrical signal representing a sound of a virtual source. A filter implements a head related transfer function (HRTF) to add spatialization cues associated with a virtual location of the virtual source to the electrical signal and outputs a filtered electrical signal that includes the spatialization cues. A speaker of the hearing device converts the filtered electrical signal into an acoustic signal and plays the acoustic signal to the user. The system includes motion tracking circuitry that tracks motion of the user as the user moves in a direction of a perceived location that the user perceives to be the virtual location of the virtual source. Head related transfer function (HRTF) individualization circuitry determines a difference between the virtual location and the perceived location in response to the motion of the user. The HRTF individualization circuitry individualizes the HRTF based on the difference.