Abstract:
Exemplary embodiments provide semiconductor devices including high-quality (i.e., defect free) group III-N nanowires and uniform group III-N nanowire arrays as well as their scalable processes for manufacturing, where the position, orientation, cross-sectional features, length and the crystallinity of each nanowire can be precisely controlled. A pulsed growth mode can be used to fabricate the disclosed group III-N nanowires and/or nanowire arrays providing a uniform length of about 10 nm to about 1000 microns with constant cross-sectional features including an exemplary diameter of about 10- 1000 nm. In addition, high-quality GaN substrate structures can be formed by coalescing the plurality of GaN nanowires and/or nanowire arrays to facilitate the fabrication of visible LEDs and lasers. Furthermore, core-shell nanowire/MQW active structures can be formed by a core-shell growth on the nonpolar sidewalls of each nanowire.
Abstract:
Exemplary embodiments provide semiconductor devices including high-quality (i.e., defect free) group III-N nanowires and uniform group III-N nanowire arrays as well as their scalable processes for manufacturing, where the position, orientation, cross-sectional features, length and the crystallinity of each nanowire can be precisely controlled. A pulsed growth mode can be used to fabricate the disclosed group III-N nanowires and/or nanowire arrays providing a uniform length of about 10 nm to about 1000 microns with constant cross-sectional features including an exemplary diameter of about 10- 1000 nm. In addition, high-quality GaN substrate structures can be formed by coalescing the plurality of GaN nanowires and/or nanowire arrays to facilitate the fabrication of visible LEDs and lasers. Furthermore, core-shell nanowire/MQW active structures can be formed by a core-shell growth on the nonpolar sidewalls of each nanowire.
Abstract:
A method of making nanowires comprising: forming a selective growth mask over a substrate, wherein the selective growth mask comprises a plurality of patterned apertures that expose a plurality of portions of the substrate; using a selective non-pulsed growth mode to grow a semiconductor material on each of the plurality of portions of the substrate exposed in each of the patterned apertures; performing a growth-mode transition from the non-pulsed growth mode to a pulsed growth mode; and forming a plurality of semiconductor nanowires by continuing the pulsed growth mode of the semiconductor material. Also disclosed is a group III-N nanowire array comprising: a substrate; a selective growth mask over the substrate, wherein the selective growth mask comprises a plurality of patterned apertures that expose a plurality of portions of the substrate; and a group III-N nanowire connected to and extending from each of the plurality of portions of the substrate, wherein the group III-N nanowire Is oriented along a single direction and maintains a cross-sectional feature of one of the plurality of selected surface regions, and wherein the group Ill-N nanowire extends over a top of the selective growth mask.
Abstract:
Exemplary embodiments provide semiconductor devices including high-quality (i.e., defect free) group III-N nanowires and uniform group III-N nanowire arrays as well as their scalable processes for manufacturing, where the position, orientation, cross-sectional features, length and the crystallinity of each nanowire can be precisely controlled. A pulsed growth mode can be used to fabricate the disclosed group III-N nanowires and/or nanowire arrays providing a uniform length of about 10 nm to about 1000 microns with constant cross-sectional features including an exemplary diameter of about 10-1000 nm. In addition, high-quality GaN substrate structures can be formed by coalescing the plurality of GaN nanowires and/or nanowire arrays to facilitate the fabrication of visible LEDs and lasers. Furthermore, core-shell nanowire/MQW active structures can be formed by a core-shell growth on the nonpolar sidewalls of each nanowire.
Abstract:
Exemplary embodiments provide semiconductor devices including high-quality (i.e., defect free) group III-N nanowires and uniform group III-N nanowire arrays as well as their scalable processes for manufacturing, where the position, orientation, cross-sectional features, length and the crystallinity of each nanowire can be precisely controlled. A pulsed growth mode can be used to fabricate the disclosed group III-N nanowires and/or nanowire arrays providing a uniform length of about 10 nm to about 1000 microns with constant cross-sectional features including an exemplary diameter of about 10-1000 nm. In addition, high-quality GaN substrate structures can be formed by coalescing the plurality of GaN nanowires and/or nanowire arrays to facilitate the fabrication of visible LEDs and lasers. Furthermore, core-shell nanowire/MQW active structures can be formed by a core-shell growth on the nonpolar sidewalls of each nanowire.
Abstract:
EXEMPLARY EMBODIMENTS PROVIDE SEMICONDUCTOR DEVICES INCLUDING HIGH-QUALITY (I.E., DEFECT FREE) GROUP III-N NANOWIRES AND UNIFORM GROUP III-N NANOWIRE ARRAYS AS WELL AS THEIR SCALABLE PROCESSES FOR MANUFACTURING, WHERE THE POSITION, ORIENTATION, CROSS-SECTIONAL FEATURES, LENGTH AND THE CRYSTALLINITY OF EACH NANOWIRE CAN BE PRECISELY CONTROLLED. A PULSED GROWTH MODE CAN BE USED TO FABRICATE THE DISCLOSED GROUP III-N NANOWIRES AND/OR NANOWIRE ARRAYS PROVIDING A UNIFORM LENGTH OF ABOUT 10 NM TO ABOUT 1000 MICRONS WITH CONSTANT CROSS-SECTIONAL FEATURES INCLUDING AN EXEMPLARY DIAMETER OF ABOUT 10-1000 NM. IN ADDITION, HIGH-QUALITY GaN SUBSTRATE STRUCTURES CAN BE FORMED BY COALESCING THE PLURALITY OF GaN NANOWIRES AND/OR NANOWIRE ARRAYS TO FACILITATE THE FABRICATION OF VISIBLE LEDs AND LASERS. FURTHERMORE, CORE-SHELL NANOWIRE/MQW ACTIVE STRUCTURES CAN BE FORMED BY A CORE-SHELL GROWTH ON THE NONPOLAR SIDEWALLS OF EACH NANOWIRE AND CAN BE CONFIGURED IN NANOSCALE PHOTOELECTRONIC DEVICES SUCH AS NANOWIRE LEDs AND/OR NANOWIRE LASERS TO PROVIDE TREMENDOUSLY-HIGH EFFICIENCIES.
Abstract:
Exemplary embodiments provide semiconductor devices including high-quality (i.e., defect free) group III-N nanowires and uniform group III-N nanowire arrays as well as their scalable processes for manufacturing, where the position, orientation, cross-sectional features, length and the crystallinity of each nanowire can be precisely controlled. A pulsed growth mode can be used to fabricate the disclosed group III-N nanowires and/or nanowire arrays providing a uniform length of about 10 nm to about 1000 microns with constant cross-sectional features including an exemplary diameter of about 10-1000 nm. In addition, high-quality GaN substrate structures can be formed by coalescing the plurality of GaN nanowires and/or nanowire arrays to facilitate the fabrication of visible LEDs and lasers. Furthermore, core-shell nanowire/MQW active structures can be formed by a core-shell growth on the nonpolar sidewalls of each nanowire.
Abstract:
Exemplary embodiments provide semiconductor devices including high-quality (i.e., defect free) group III-N nanowires and uniform group III-N nanowire arrays as well as their scalable processes for manufacturing, where the position, orientation, cross-sectional features, length and the crystallinity of each nanowire can be precisely controlled. A pulsed growth mode can be used to fabricate the disclosed group III-N nanowires and/or nanowire arrays providing a uniform length of about 10 nm to about 1000 microns with constant cross-sectional features including an exemplary diameter of about 10-1000 nm. In addition, high-quality GaN substrate structures can be formed by coalescing the plurality of GaN nanowires and/or nanowire arrays to facilitate the fabrication of visible LEDs and lasers. Furthermore, core- shell nanowire/MQW active structures can be formed by a core-shell growth on the nonpolar sidewalls of each nanowire.