Abstract:
The invention concerns a material comprising a compound of formula Pr(1-x-y)LnyCexX3 wherein—Ln is chosen from the elements or mixtures of at least two elements, of the group: La, Nd, Pm, Sm, Eu, Gd, Y, —X is chosen from the halides or mixtures of at least two halides, of the group: Cl, Br, I, —x is above 0.0005 and is lower than 1, —y is from 0 to less than 1 and—x+y) is less than 1, and its use as scintillation detector, for example in PET scanner with time of flight capabilities.
Abstract:
The invention concerns a material comprising a compound of formula Pr(1-x-y)LnyCexX3 wherein—Ln is chosen from the elements or mixtures of at least two elements, of the group: La, Nd, Pm, Sm, Eu, Gd, Y, —X is chosen from the halides or mixtures of at least two halides, of the group: Cl, Br, I, —x is above 0.0005 and is lower than 1, —y is from 0 to less than 1 and—x+y) is less than 1, and its use as scintillation detector, for example in PET scanner with time of flight capabilities.
Abstract:
The invention concerns an inorganic scintillator material of general composition M1-xCexCl3, wherein: M is selected among lanthanides or lanthanide mixtures, preferably among the elements or mixtures of elements of the group consisting of Y, La, Gd, Lu, in particular among the elements or mixtures of elements of the group consisting of La, Gd and Lu; and x is the molar rate of substitution of M with cerium, x being not less than 1 mol %and strictly less than 100 mol %. The invention also concerns a method for growing said monocrystalline scintillator material, and the use of said scintillator material as component of a scintillating detector in particular for industrial and medical purposes and in the oil industry.
Abstract:
The invention concerns an inorganic scintillator material of general composition M1-xCexCl3, wherein: M is selected among lanthanides or lanthanide mixtures, preferably among the elements or mixtures of elements of the group consisting of Y, La, Gd, Lu, in particular among the elements or mixtures of elements of the group consisting of La, Gd and Lu; and x is the molar rate of substitution of M with cerium, x being not less than 1 mol % and strictly less than 100 mol %. The invention also concerns a method for growing said monocrystalline scintillator material, and the use of said scintillator material as component of a scintillating detector in particular for industrial and medical purposes and in the oil industry.
Abstract:
The invention concerns an inorganic scintillator material of general composition M1-xCexCl3, wherein: M is selected among lanthanides or lanthanide mixtures, preferably among the elements or mixtures of elements of the group consisting of Y, La, Gd, Lu, in particular among the elements or mixtures of elements of the group consisting of La, Gd and Lu; and x is the molar rate of substitution of M with cerium, x being not less than 1 mol % and strictly less than 100 mol %. The invention also concerns a method for growing said monocrystalline scintillator material, and the use of said scintillator material as component of a scintillating detector in particular for industrial and medical purposes and in the oil industry.