Abstract:
The method applies to non-volatile semiconductor memories with cells arranged in rows and in columns, in which each cell has a first terminal (CG), a second terminal (D), and a third terminal (S) connected, respectively, to a row line (WLi), to a column line (BLi), and to a common node by respective connection strips (CG, R). In order to form connections with low resistivity and consequently to save semiconductor area, the method provides for the formation of an oxide layer (I2) which covers the connection strips of the first terminals (CG) and of the third terminals (S), the formation of channels (CH1, CH2) along the connection strips until the surfaces thereof are exposed, and the filling of the channels (CH1, CH2) with a material (W) having a resistivity lower than that of the connection strips.
Abstract:
A lateral DMOS transistor having a drain region (13, 14) which comprises a high-concentration portion (14) with which the drain electrode (D) is in contact and a low-concentration portion (13) which is delimited by the channel region. In addition to the conventional source, drain, body and gate electrodes, the transistor has an additional electrode (25) in contact with a point of the low-concentration portion of the drain region (13, 14) which is close to the channel. The additional electrode permits a direct measurement of the electric field in the gate dielectric and thus provides information which can be used both for characterizing the transistor and selecting its dimensions and for activating devices for protecting the transistor and/or other components of an integrated circuit containing the transistor.