Abstract:
This invention relates to a circuit structure of the feedforward type with programmable zeroes, particularly for synthesizing time-continual filters. This structure comprises a pair of amplification cells (14,15) interconnected at at least one interconnection node (A) and connected between a first signal (Vin) input (IN) of a first cell (14) and an output terminal (U) of the second cell (15, each cell (14,15) comprising a pair of transistors (10,2;6,7) which have a conduction terminal in common and have the other conduction terminals coupled respectively to a first voltage reference (Vcc) through respective bias members (3,4;9,11). The structure further comprises a circuit leg (13) connecting a node (X) of the first cell (14) to the output terminal (U) and comprising a transistor (8) which has a control terminal connected to the node (X) of the first cell (14), a first conduction terminal connected to the output terminal (U), and a second conduction terminal coupled to a second voltage reference (GND) through a capacitor (Cc). Thus, a released "zero" can be introduced in the right semiplane of the pole-zero complex plane to improve the flattening of group gain.
Abstract:
This invention relates to a circuit structure of the feedforward type with programmable zeroes, particularly for synthesizing time-continual filters. This structure comprises a pair of amplification cells (14,15) interconnected at at least one interconnection node (A) and connected between a first signal (Vin) input (IN) of a first cell (14) and an output terminal (U) of the second cell (15, each cell (14,15) comprising a pair of transistors (10,2;6,7) which have a conduction terminal in common and have the other conduction terminals coupled respectively to a first voltage reference (Vcc) through respective bias members (3,4;9,11). The structure further comprises a circuit leg (13) connecting a node (X) of the first cell (14) to the output terminal (U) and comprising a transistor (8) which has a control terminal connected to the node (X) of the first cell (14), a first conduction terminal connected to the output terminal (U), and a second conduction terminal coupled to a second voltage reference (GND) through a capacitor (Cc). Thus, a released "zero" can be introduced in the right semiplane of the pole-zero complex plane to improve the flattening of group gain.