Abstract:
A bandgap voltage reference circuit ( 100' ) for generating a bandgap reference voltage ( Vbg ) according to a first current ( Iptat ) is provided. Said circuit comprises a current generator ( 104 ) controlled by a first driving voltage ( Vpgate ) to generate the first current ( Iptat ) depending on the driving voltage. Said circuit further comprises a first reference circuit clement (102 ) adapted to generate a first reference voltage ( Vpluse ) based on the first current and a second reference circuit element ( 106 ) adapted to generate a second reference voltage ( Vminuse ) according to the first current. The circuit further comprises an operational amplifier ( 124' ) having a first input terminal coupled with the first circuit element for receiving a first reference input voltage ( Vplus ) based on the first reference voltage, a second input terminal coupled with the second reference circuit element for receiving a second input voltage ( Vminus ) based on the second reference voltage, and an output terminal coupled with the current generator to provide the first driving voltage. The circuit also comprises a control circuit ( 134 ). Said control circuit comprises first capacitive means ( 136 ) having a first terminal coupled with the first reference circuit element to receive the first reference voltage and a second terminal coupled with the first input terminal to provide the first input voltage. The control circuit further comprises second capacitive means ( 138 ) comprising a first terminal coupled with the second reference circuit element for receiving the second reference voltage and a second terminal coupled with the second input terminal to provide the second input voltage. The control circuit further comprises first biasing means ( 140' ) for selectively providing a first common-mode voltage ( Vcm ) to the second terminal of the first and second capacitive means. The operational amplifier is an offset compensated operational amplifier further comprising a first compensation terminal for receiving the first common-mode voltage and a second compensation terminal coupled with a compensation offset management circuit ( 600 ) for receiving a first compensation voltage ( Vc1 ). The offset management circuit comprises an auxiliary operational amplifier ( 902 ) having a first input terminal adapted to receive a third input voltage ( Vplus2 ) corresponding to the first input voltage, a second input terminal adapted to receive a fourth input voltage ( Vminus2 ) corresponding to the second input voltage and an output terminal adapted to be selectively coupled with a second compensation terminal of the operational amplifier for providing the first compensation voltage.
Abstract:
A bandgap voltage reference circuit ( 100 ) for generating a bandgap voltage reference ( Vbg ). Said circuit comprises a current generator ( 104 ) controlled by a first driving voltage ( Vpgate ) for generating a first current ( Iptat ) depending on the driving voltage, and a first reference circuit element ( 102 ) coupled to the controlled current generator ( 104 ) for receiving the first current and generating a first reference voltage ( Vpluse ) in response to the first current. The circuit further comprises a second reference circuit element ( 106 ) for receiving a second current ( Iptat ) corresponding to the first current; said second reference circuit element is adapted to generate a second reference voltage ( Vminuse ) in response to the second current. Said circuit further comprises a third reference circuit element ( 128 ) for receiving a third current ( Iptat ) corresponding to the first current and generating the bandgap reference voltage in response to the third current, and an operational amplifier ( 124 ). The operational amplifier has a first input terminal coupled to the first circuit element for receiving a first reference voltage input ( Vplus ) based on the first reference voltage, a second input terminal coupled to the second reference circuit element for receive a second input voltage ( Vminus ) based on the second reference voltage and an output terminal coupled to the controlled current generator to provide the first driving voltage ( Vpgate ) to the current generator according to the difference between the first input voltage and the second input voltage. The circuit also comprises a control circuit ( 134 ) comprising first capacitive means ( 136 ) and second capacitive means ( 138 ). The first capacitive means have a first terminal coupled to the first reference circuit element to receive the first reference voltage and a second terminal coupled to the first input terminal to provide the first input voltage. The second capacitive means comprise a first terminal coupled to the second reference circuit element for receiving the second reference voltage and a second terminal coupled to the second input terminal to provide the second input voltage. The control circuit also comprises biasing means ( 140 ) to selectively provide a common-mode voltage ( Vcm ) to the second terminals of the first and second capacitive means.
Abstract:
A solution for amplifying an input signal (Vin) into an output signal (Vo) to be applied to an electric load comprising at least one capacitive component (Cl) is proposed. A corresponding amplifier stage comprises a pre-amplifier module (305) adapted to receive a first supply voltage and an output module (310) adapted to receive a second supply voltage. The pre-amplifier module comprises: a first gain block (315) adapted to pre-amplify the input signal into a first pre-amplified signal, a second gain block (320) adapted to pre-amplify the input signal into a second preamplified signal, a feedback block (325) adapted to feed-back the output signal into a feedback signal, and a combination element (330) adapted to combine the first pre-amplified signal and the feedback signal into a combined signal, and wherein the output module is adapted to combine the combined signal and the second pre-amplified signal into the output signal.
Abstract:
A digital-to-analog converter (115) is proposed. The digital-to-analog converter (115) comprises a conversion block (205) for receiving a digital value ( D D ) and providing a corresponding first analog value ( D A ), and an amplification block (210) for receiving said first analog value ( D A ) and providing a second analog value ( V P ) amplified by an amplification factor (G) with respect to said first analog value ( D A ). Said amplification block (210) comprises a first input terminal for receiving said first analog value ( D A ), a second input terminal, and an output terminal for providing said second analog value ( V P ). Said amplification block (210) further comprises a first capacitive element (C A ) having a first (T A1 ) and a second (T A2 ) terminals connected to the output terminal and the second input terminal, respectively, of the amplification block (210), and a second capacitive element (C B ) having a first (T B1 ) and a second (T B2 ) terminals connected to the second terminal (T A2 ) of the first capacitive element (C A ) and to a reference terminal, respectively, said first (C A ) and second (C B ) capacitive elements determining said amplification factor ( G ). Said amplification block (210) further comprises a circuit stage (C AR ,C BR ,S W1 -S W4 , 120 , ϕ 1 -ϕ 3 ) for recovering, at each predefined time period ( T R ) , an operative charge at the first terminal ( T B1 ) of said second capacitive element (C B ), and hence the second analog value ( V P ) to the output terminal of said amplification block (210).