Abstract:
In one embodiment, a parallel batch reactor for effecting chemical reactions includes a vessel block comprising reactor vessels for receiving components of a reaction and a valve block removably attached to the vessel block. The valve block includes a first plurality of valves in fluid communication with an inlet port for supplying pressurized fluid to the reactor vessels and configured to fluidically isolate one or more of the reactor vessels from at least one of the other reactor vessels. The valve block further includes a second plurality of valves in fluid communication with the reactor vessels for injecting chemical components into the pressurized reactor vessels or sampling chemical components from the pressurized reactor vessels. The vessel block and valve block are configured to sustain an operating pressure of at least 15 psig.
Abstract:
The present invention relates, inter alia, to methodologies for the synthesis, screening and characterization of organometallic compounds and catalysts (e.g., homogeneous catalysts). The methods of the present invention provide for the combinatorial synthesis, screening and characterization of libraries of supported and unsupported organometallic compounds and catalysts (e.g., homogeneous catalysts). The methods of the present invention can be applied to the preparation and screening of large numbers of organometallic compounds which can be used not only as catalysts (e.g., homogeneous catalysts), but also as additives and therapeutic agents.
Abstract:
An apparatus and method for carrying out and monitoring the progress and properties of multiple reactions is disclosed. The method and apparatus are especially useful for synthesizing, screening, and characterizing combinatorial libraries, but also offer significant advantages over conventional experimental reactors as well. The apparatus generally includes multiple vessels for containing reaction mixtures, and systems for controlling the stirring rate and temperature of individual reaction mixtures or groups of reaction mixtures. In addition, the apparatus may include provisions for independently controlling pressure in each vessel, and a system for injecting liquids into the vessels at a pressure different than ambient pressure. In situ monitoring of individual reaction mixtures provides feedback for process controllers, and also provides data for determining reaction rates, product yields, and various properties of the reaction products, including viscosity and molecular weight.
Abstract:
An apparatus and method for carrying out and monitoring the progress and properties of multiple reactions is disclosed. The method and apparatus are especially useful for synthesizing, screening, and characterizing combinatorial libraries, but also offer significant advantages over conventional experimental reactors as well. The apparatus generally includes multiple vessels for containing reaction mixtures, and systems for controlling the stirring rate and temperature of individual reaction mixtures or groups of reaction mixtures. In addition, the apparatus may include provisions for independently controlling pressure in each vessel, and a system for injecting liquids into the vessels at a pressure different than ambient pressure. In situ monitoring of individual reaction mixtures provides feedback for process controllers, and also provides data for determining reaction rates, product yields, and various properties of the reaction products, including viscosity and molecular weight.